1 The logic programming paradigm in
numerical computation

M.H. van Emden*

University of Victoria

Abstract. Although CLP(R) is a promising application of the logic program-
ming paradigm to numerical computation, it has not addressed what has long been
known as “the pitfalls of [numerical] computation” [12]. These show that rounding
errors induce a severe correctness problem wherever floating-point computation is
used. Independently of logic programming, constraint processing has been applied
to problems in terms of real-valued variables. By using the techniques of interval
arithmetic, constraint processing can be regarded as a computer-generated proof
that a certain real-valued solution lies in a narrow interval. In this paper we propose
a method for interfacing this technique with CLP(R). This is done via a real-valued
analogy of Apt’s proof-theoretic framework for constraint processing.

1.1 Introduction

In the first flowering of the logic programming paradigm, a large part of
computer science was identified as suitable territory for conquest. This am-
bitious program suffered a significant omission: numerical computation. In
this paper we will argue that there are correctness problems of great prac-
tical importance in numerical computation and that logic programming is a
promising method to solve these. In the rest of this introduction we will trace
in historical order the various steps needed to go from conventional numerical
computation to a logic programming system for numerical computation.

Via interval arithmetic to sound numerics Correctness of numerical com-
putation has not been fully addressed, either by the program verification
community, or by logic programming. As we shall show below, this issue has
also been ignored by mainstream numerical analysis. Only a distinct sub-
culture, interval arithmetic, has taken seriously the possibility that users of
numerical software might want guaranteed correct output.

In interval arithmetic one associates a set of reals with each real-valued
unknown. Results of computations are given as membership of a set. This
method is of practical value for two reasons:

* Department of Computer Science, University of Victoria, P.O. Box 3055,

Victoria, B.C., V8W 3P6 Canada. Phone: (604) 721-7225, fax: (604)
721-7292, e-mail: vanemden@csr.uvic.ca. Home Page URL: http://www-
csc.uvic.ca/home/vanemden /vanemden.html



2 M.H. van Emden

1. The sets are restricted to closed, connected sets of reals such that its
bounds, if any, are floating-point numbers. Such sets are called intervals.
They are economically representable in computer memory, compared to
other set representations.

2. Arithmetic is performed on intervals. As the result intervals can be com-
puted by operations of a standard floating-point processor in such a way
that correctness is preserved, the set operations are fast compared to
most other set operations.

In this way numerical computations on standard floating-point processors can
be interpreted as computer-generated proofs that a real-valued variable be-
longs to an interval that has a width near the limit imposed by the hardware.
This method of ensuring correctness by combining intervals with modern
floating-point hardware we call sound numerics.

Some proponents of interval arithmetic may not agree with the above re-
description: other motivations and interpretations of interval arithmetic exist.
However, its seems to us that sound numerics is the logical conclusion of a
long development that started in the 1960s, even before Moore’s landmark
book [21].

Subsequent development of interval arithmetic Upon its inception in the
1960s, interval arithmetic was warmly received in the numerical computation
community. There are, however, several reasons why the initial enthusiasm
turned into disparagement.

1. Dependencies between variables cause intervals to become disappoint-
ingly wide. For example, if the interval associated with z is [0,1], then
the one associated with =z — x is [-1, 1].

2. Result intervals were not always correct. To guard against improper
rounding, a fudge factor was subtracted from computed lower bounds
and added to computed upper bounds. This slowed down computation
and was difficult to do correctly in all cases without undue loss of accu-
racy.

3. In the prevailing culture of computing, higher quality of results has only
been acceptable in combination with higher performance. We still have
to get used to the idea that higher quality may come at a cost.

As a result of these conditions, interval methods were rejected by mainstream
numerical computation. Only after this early rejection some of the potential
of interval arithmetic was realized.

As to point 1 above, the disappointingly large intervals turned out to be
a non-issue. These are problematic in the restricted context of evaluation of
expressions. But expression evaluation is a minor concern in numerical com-
putation. An example of a major one is the solving of a nonlinear equation.
Here interval arithmetic, in spite of the dependency problem, makes possible
the Interval Newton method. This method is not merely a sound alternative



1 The logic programming paradigm in numerical computation 3

to what is achieved more efficiently by conventional numerical computation.
Interval Newton proves that no solutions exists outside certain narrow inter-
vals; it also may prove that such an interval contains exactly one or at least
one solution. Such results have not been obtained by conventional numerical
computation.

As for point 2 above, the IEEE standard for floating-point arithmetic has
made superfluous the use of fudge factors. Instead, one can efficiently control
the rounding modes to ensure that result intervals contain all values they
should contain with a minimum of information loss. However, the last details
of its use in interval arithmetic are still an area of active research [16].

As for point 3 above, the rule that the fast drives out the good has rarely
been violated. Only in niche applications such as Lisp and Prolog, has security
and programming convenience been considered an adequate reward for loss
of execution speed. The recent wide-spread acceptance of other interpreters
such as those for Perl and Java may be a sign that Gresham’s law is relaxing
its grip on computing.

Thus there are three reasons for believing that interval methods are ex-
periencing a reversal of misfortune. The advent of interval constraints is yet
another one.

Interval constraints Independently, Davis [9] and Cleary [7] arrived at a re-
lational generalization of interval arithmetic, which is now known as interval
constraints. Shortly after, Cleary’s work was used in BNR Prolog [5,4] to
obtain software that can be viewed in two different ways.

1. BNR Prolog as a version of Prolog where soundness is preserved for
queries involving real numbers.

2. BNR Prolog as interval constraint system that happens to have Prolog
as programming language front end.

Neither of these interpretations quite fits the logic programming para-
digm: it is not clear how the decimals in the answer substitution make the
answer a logical implication of the query. A step in this direction was taken
by the CLP scheme.

CLP(R) The CLP scheme extends the scope of the logic programming par-
adigm in two ways. Semantically, it is an interface with theories that are
important in applications, such as those for the integers, the reals, the regu-
lar expressions, and others. Operationally, it is an interface with important
algorithms, such as Gaussian Elimination and Simplex.

Ironically, existing implementations of CLP(R) rely on conventional nu-
merical computation. In this way the logic programming paradigm is com-
promised by the well-known pitfalls of floating-point computation. Forsythe
[12] gave an early survey of the various ways in which the rounding errors of
floating-point arithmetic can lead to nonsense output.



4 M.H. van Emden

As illustration we restrict ourselves here to a particularly short and elo-
quent example, taken from Parker’s paper [22]. Consider the recurrence rela-
tion

Uk4+1 = 111 — 1130/Uk + 3000/(ukuk,1)

with initial values
ug = 27 Uy = —4.

Computed results for ugg:

single precision 100.0000
double precision 100.00000000000

Parker reports that the value of ugg is between six and seven. As CLP(R)
takes the results of floating-point computation at face value, one can “prove”
anything by including computations such as these in the deduction.

What CLP(R) lacks are exactly the techniques of sound numerics.

Overview of this paper Errors in numerical computation can arise from a
variety of sources, most of which are of no concern to numerical analysis,
as conventionally practiced. In the logic programming paradigm one is re-
sponsible for the entire span between program specification and computer
output.

If numerical computation is to be included in the logic programming para-
digm, then numerical problems need to be specified in logic. This seems virgin
territory, even for a problem as simple as the one addressed in Section 1.2:
solving a single equation with a real unknown.

In the remaining sections we briefly recapitulate CLP(R) and propose a
proof-theoretic approach to providing a sound completion of this method.

1.2 Numerical programs need verification

It is the aim of this paper to use logic programming to verify results obtained
with numerical software. Before invoking the proposed tool, logic program-
ming, let us consider what is required of any method of verification, whether
logic programming or something else. The least one needs is a precise method
for specifying the problem to be solved. Surprisingly, this turns out to be vir-
gin territory. In this paper we consider the problem of formalizing a simple
numerical problem: that of solving a single equation in a single unknown.

1.2.1 Specification of equation-solving

In single-variable equation solving, the problem is to find a real z such that
f(z) =0, where f is a real-valued function of a real-valued argument.

The need to specify it in formal logic brings forward the question: “What
does it mean to solve f(z) = 07” Solutions in the mathematical sense are



1 The logic programming paradigm in numerical computation 5

reals that typically have no finite representation in any conventional number
system. The shortest description of such a real may well be: “The least (or the
second largest, or whatever) x such that f(z) = 0”. That shows that we do
not necessarily want a solution of f(x) = 0. We just want useful information
about the reals being defined by f(x) = 0. Preferably information that is finite
in quantity, such as a solution being between two floating-point numbers that
are sufficiently close together.

Given that it is the ambition of logic programming to cover the entire gap
between specification and computer output, let us ask again: What does it
mean to solve f(xz) = 0?7 What can we expect as output? To start with, for
a typical f, f(a) # 0 for all double-length IEEE-standard-standard floating-
point numbers «. Suppose that, untypically, there exists a floating-point
number « such that f(a) = 0. Then usually f¥F(a) # 0, where fI'F is
the algorithm’s floating-point implementation of f. And if, peradventure,
fEP(a) = 0, then it is likely that f(a) # 0.

The Numerical Zero Observations such as these will cause a numerical analyst
to point out that it is an unspoken assumption that the purpose of computer
software can at most be to find a numerical zero, which is any x such that
|f(x)] < € for a suitable € > 0.

However the idea of the Numerical Zero is only the first step. If one takes
it too literally, one also runs into trouble. An algorithm for a Numerical Zero
may be correct from the point of view of numerical analysis and still return
an « such that |f(«)| is greater than e.

After all, the algorithm finds that |f¥(a)| < €, which is not inconsistent
with |f(a)| > €. There is usually a difference between f(a) and f7(a). The
difference can be large if f7'F is ill-conditioned. Moreover, when € is a nonzero
power of ten, which happens a lot, then it is not equal to ¢, which is a real
with a finite binary representation. To make a long story short, there are
plenty of possibilities for missing even such a realistic-sounding goal as the
Numerical Zero.

Apart from these practical problems, there is a conceptual one. The obvi-
ous formalization of the Numerical Zero is 3z € R. |f(z)| < €. This is subject
to the same difficulty as before: The truth value of 3z € R. |f(z)| < € pro-
vides no information about the real that is asserted to exist. Such information
is outside of the control of this formal specification and thus is prey to the
well-known pitfalls of numerical computation.

Definition versus description Thus we see that “solving f(z) = 0” is ambigu-
ous. It could be interpreted as deciding whether {x € R | f(z) = 0} is empty.
This concerns the definition of a zero. It could also mean, in addition, pro-
viding useful information about such reals as may satisfy the definition. This
is a matter of finding a useful description of the real number being defined.

The conceptual difficulties arising in formal specification of solving f(x) =
0 are removed by distinguishing between definition and description. The def-



6 M.H. van Emden

inition is involved in the problem statement. The description is the required
result.

Logic is suited equally well for formal definitions as for formal descriptions.
A formula F' with a free variable x can serve either as a description or as
a definition: any object substituted for x that makes F' true, satisfies the
definition or description.

We formalize the distinction between definition and description as follows.
Suppose we have formulas A and B, both with free variable z, that repre-
sent a definition and description respectively. Formula Vz.(A = B) can be
interpreted as saying that what B describes is defined by A. The implication
is necessary because it is often the case that we cannot show conclusively
by numerical methods that a solution exists. Thus we cannot expect always
to be able to show that A is true (definition is satisfied) and B is true (this
description applies). In general the best we can hope for is a proof that, if
there is a solution (A is true), then it is described by B.

To be of practical interest, A and B need to have a certain form.

1. They have to have the same free variables, which we will denote by the
n-tuple x.

2. A has to be what we call a Numerical Definition: a conjunction of atomic
formulas built up out of the vocabulary of a theory of real numbers. That
is, each atom is an equality or inequality between terms denoting reals.
This restricted form facilitates implementation, yet is expressive enough
for a wide variety of numerical problems.

3. B has to be what we call an Interval Description. We assume that what
one wants to know about real numbers is how they relate to other real
numbers that we can represent on a computer; in other words, floating-
point numbers. Taking into account that a solution in general is a tuple
of reals and that there is in general more than one solution, it is rea-
sonable to make an interval description a disjunction of atomic formulas
of the form x € b where x is a tuple of n variables and b is the Carte-
sian product of n floating-point intervals. This restricted form facilitates
implementation, yet is expressive enough for a wide variety of numerical
problems.

Thus, the general form is
Ve e RU((ALA---NAg) = (z€bV---Vaby,)).

We call this a Numerical Definition/Interval Description sentence, and ab-
breviate it to ND/ID sentence.

Not all descriptions are useful. They are the more useful the smaller n
and the smaller, for given n, by, ...,b, are. An important case of n being as
small as possible is n = 0. In that case the sentence states unconditionally
that there are no solutions.



1 The logic programming paradigm in numerical computation 7

The conditionality of the ND/ID sentence seems disappointingly weak.
If there is no solution, then the sentence can be true with any ID formula.
One should not lose sight of the fact that the ND/ID sentence states uncon-
ditionally that no solutions exist outside of the area designated by the ID
formula.

Let us go back to the example of solving a single equation in a single
unknown. In that case the ND/ID formula has the form

Vo.(f(z) =0= (z € [, f1] V-V € [an, b))

This formalization is suited to the limitations of numerical computation. If
the solutions of f(x) = 0 are simple and well separated, then we can expect
n to be equal to the number of zeroes and we can expect the intervals to
be narrow. In pathological cases, any of the intervals can fail to contain a
solution. This possibility cannot always be avoided because f may come so
close to zero that the limited precision of the computer’s arithmetic may fail
to distinguish such a value of f from zero.

The constraint processing methods we consider in this paper have the
property that at the location of such a false zero, the value of f is close to
Zero.

1.3 From Prolog to CLP(R)

One of the motivations of logic programming is that it yields results that are
correct in the sense of being logically implied by the background knowledge.
The role of the problem statement is to select that part of background knowl-
edge that solves the problem. To play this role, the problem statement has
to be expressed in logic.

Now that we have decided on a logic expression for numerical problems,
let us see whether these can be solved in the logic programming paradigm. We
start by tracing the development from Prolog [8], the first logic programming
language.

Prolog has a subset that almost corresponds to a subset of first-order
predicate logic in clausal form. The qualification is that most Prolog imple-
mentations omit the occurrence check in unification.

Exploiting the pure subset of Prolog was initially not a high priority
among language designers and implementers. That defect has since been
remedied by the language Godel [17].

Pure Prolog realizes the following soundness result.

If program P with query @ leads to success with substitution 6, then
P logically implies Va.(Q0), where z is the tuple of free variables in

Q.

But the restrictions of pure Prolog are too severe to be of practical inter-
est: data are restricted to trees based ultimately on symbolic constants.



8 M.H. van Emden

1.3.1 Constraint logic programming

That we only get symbolic computation in Prolog is not surprising because
the only computational step is goal reduction. There is no scope for software
and hardware that implement any of the many powerful combinatorial and
numerical algorithms that have been developed outside logic programming.
The steps taken to overcome this limitation can be summarized under the
term constraint logic programming.

In logic programming, all atoms in a condition are subject to goal reduc-
tion. In constraint logic programming an atom in a condition can be either
a goal, to be treated by goal reduction as in logic programming, or a con-
straint. Constraints are not eliminated in the course of program execution.
The conjunction of constraints is tested for consistency by extra-logical algo-
rithms. A query, as generated during program execution, fails as soon as the
conjunction of constraints is found to be inconsistent.

As in logic programming, execution terminates with success as soon as no
goals remain in the query. In constraint logic programming there is typically
in such a situation a nonempty conjunction of constraints. The answer is
then conditional upon this residual conjunction. This describes the pioneering
implementations of constraint logic programming: Prolog II and III.

The idea was formalized in the CLP scheme.

1.3.2 The CLP scheme

The CLP scheme is based on the observation that in logic programming the
Herbrand base can be replaced by any of many other semantic domains. For
example, the reals. In this section we first review the CLP scheme as described
in [18].

As the CLP scheme can be used with different semantic domains, it has
as parameter a tuple (X, D, L, T) describing the semantic domain, where X
is a signature, D is a X-structure, £ is a class of X-formulas, and 7 is a first-
order X-theory. These components play the following roles. X' determines the
relations and functions that can occur in constraints. D is the structure over
which computations are performed (for example the ordered field of the real
numbers)!. £ is the class of constraints that can be expressed. Finally, 7
axiomatizes properties of D.

If a goal G has a successful derivation from program P with answer con-
straint C, then P, 7 &= V[G < C]. No substitution is applied to G because

1D is a structure (in the sense of model theory) consisting of a set D of values
(the carrier of the structure) together with relations and functions over D as
specified by the signature Y. For example, the complete ordered field R has R,
the set of real numbers, as carrier. The signature component of R specifies < as
relation, and 0,1, 4+, —, X,/ as function symbols. The status of = and # varies
between treatments: some include them in the signature; some regard them as
part of logic.



1 The logic programming paradigm in numerical computation 9

in constraint logic programming unification is done by means of equations,
which are part of the constraints.

Derivations in the CLP scheme are defined by means of transitions be-
tween states. A state is defined as a tuple (A4, C,S) where A is a multiset of
atoms and constraints and C' and S are multisets of constraints?. Together
C and S are called the constraint store. The constraints in C' are called the
active constraints; those in S the passive constraints.

The query @ corresponds to the initial state (@, 0, ). A successful deriva-
tion ends in a state of the form ((}, C,S). The existence of such a derivation
implies that

P.T EVI(Q < (CAS))

The CLP scheme provides a framework for constraint store management
by defining a derivation as a sequence of states such that each next state is
obtained from the previous one by a transition.

There are four transitions:

1: Resolution
(Au{a},C,S) =, (AUB,C,SU{s1 =t1,...,8, =1tn})

if a is the atom selected out of AU {a} by the computation rule, h «— B
is a rule of P, renamed to new variables, and if h = p(¢1,...,t,) and

a=mp(s1,...,8,).

(AU{a},C,8) —, fail

if a is the atom selected by the computation rule, and for every rule
h < B in P, h and a have different predicate symbols.
2: Constraint Transfer

(Au{c},C,S) —. (A, C,SU{c})

if constraint c is selected by the computation rule.
3: Constraint Store Management

(A,C,S) —; (A,C",S")

if (C’,S’) is inferred from (C,S).
4: Consistency Test
<A7 C’ S> _>S <A7 C’ S>

if C' is consistent.

(A,C,S) —s fail
if C' is inconsistent.

2 We will often regard C and S as formulas. Then they are the conjunctions of the
constraints they contain as multisets.



10 M.H. van Emden

1.3.3 CLP(R)

How does CLP(R) fit into the CLP scheme? In the first place, the semantic
domain that is a parameter in the CLP scheme is instantiated to a theory of
the reals. In addition, the CLP scheme is customized by a constraint store
management strategy. The active constraints are linear equations or inequal-
ities. They are solved by, respectively, Gaussian elimination and Simplex.
Hopefully, this results in additional variables being instantiated, so that some
passive constraints become linear, so that they can be added to the active
constraints. The aim is to remove all passive constraints this way.

Existing implementations of CLP(R) implement the algorithms to solve
the generated equations in the same way as in conventional numerical analy-
sis. As a result, rounding errors prevent CLP(R) answers from being logical
consequences. Thus such implementations should not be considered logic pro-
gramming systems, but numerical problem solvers to be compared with the
like of MatLab. Such a comparison will give CLP(R) advantages such as
the ability to handle certain nonlinear problems via its unique linearization
scheme.

1.4 Sound CLP(R)

There are two methods for obtaining soundness with floating-point computa-
tion: interval arithmetic and interval constraints. The most straightforward
way of protecting the soundness of CLP(R) is to implement its algorithms
for Gaussian elimination and Simplex method in interval arithmetic. But it
should be kept in mind that, in doing so, one is up against all the obstacles
that have prevented, for three decades, a wide adoption of interval arithmetic.
The experience has been that translating an algorithm that works well in
conventional computation gives disappointingly large intervals if converted
unchanged to interval arithmetic.

For this reason it is attractive achieve sound CLP(R) by means of interval
constraints rather than interval arithmetic®, as was proposed in [26]. In the
present paper we supply some of the details that are missing in [26]. In
supplying these details it turned out that the distinction in the CLP scheme
between active and passive constraints is not useful. Thus we consider a
simplified version of the scheme where there is only one type of constraint.
We will not spell out in detail the transitions of the CLP scheme described
in section 1.3.2 according to this simplification. Suffice it to say that the
state (A,C,S) becomes (A,C) and that the constraint-store management
transition is dropped.

3 Why are large intervals no problem in interval constraints, which is otherwise so
closely related to interval arithmetic? The explanation is not simple. But it is
easy to convince oneself that it is so by considering the performance of Numerica
[15] where superior time performance is obtained as well as very small intervals.



1 The logic programming paradigm in numerical computation 11

In CLP(R), the leaf nodes of the search tree for query G are distinguished
by having an empty goal conjunction. Thus a leaf node contains only a con-
straint conjunction, say, C. Such a node represents the conditional answer
Vz.(GO < C) (see footnote?). C' is a conjunction of equalities or inequal-
ities between terms denoting reals. This is general enough to cover many
important problems of numerical computation.

Let us consider the case where C' is a conjunction expressing an equation
that would be written as f(z) = 0 in a conventional informal discussion.
Do we just want to know whether the equation has a solution? If so, that
information would allow us to improve the conditional answer Va.(GO < C')
to dz.G6. For example,

Vr.(p(g(z)) < ((z + 1)(z - 1) = 0))

would be “improved” to 3z.p(g(x)) without a hint as to what such an z might
be. It is reasonable to expect some useful information about the x that exists.

If this problem sounds familiar, it is because in section 1.2.1 we en-
countered the same puzzle when we were considering logic specification of
equation-solving — at that time independently of the CLP scheme. In that
section we concluded the need to distinguish between definition and descrip-
tion. We found that ND/ID sentences express both aspects. We saw that
the conditionality of these formulas cannot always be avoided, so that they
are useful as a generally applicable method for logically specifying numerical
problems.

It is then clear what to do: to compute for every leaf node with constraint
conjunction C' an ND/ID formula where the ND part is C' and where the ID
part is as informative as we can make it. This desideratum often results in
the ID part being the empty disjunction, i.e. the logical constant FALSE.
In such a case —3z.C' has been proved and the leaf node can be omitted
from the search tree. In case the ID part is not equivalent to FALSE, it
is still possible that —=3z.C. However, as we explain below, the method of
interval constraints can make this combination of outcomes unlikely. Even
then we still have valuable information: the contrapositive of the ND/ID
formula guarantees that no solution to C exists outside the area described
by the ID part.

4 In the CLP scheme there are no explicit substitutions. Instead, equations are
added to the constraint store; see the resolution transition in the description of
CLP derivations. Although this has an attractive elegance, it has its advantages
to be able to say that the constraint store specifies only the numerical problem
to be solved. That is why we assume that substitutions are used in the same way
as in the conventional way of describing SLD derivations [19].



12 M.H. van Emden

1.5 Proving ND/ID formulas

For a given constraint conjunction C' we need to prove an ND/ID formula
Ve.(C= (r€bV---Va b))

where the ID part is as informative as possible.

We achieve this goal by means of interval constraints in a proof-theoretic
framework inspired by that given by Apt [1] for constraints over discrete
domains. Just as Apt’s method is a proof-theoretic model for constraint pro-
cessing over integers as pioneered in CHIP [10], so also his method can be
used as a proof-theoretic model for interval constraints over the reals. We
adapt Apt’s inference rules to domains of reals and show how they can be
used to prove useful ND/ID formulas.

1.5.1 CSPs

Apt’s proof-theoretic framework defines Constraint Satisfaction Problems
(CSPs) and formulates proof rules that derive from a given CSP one or more
other ones. In our development of CSPs, we start with the part that is gener-
ally applicable. After that we continue with CSPRs, that is, CSPs intended
for constraints over reals.

A CSP may be described as follows.
e Syntactically, a CSP is an expression of the form C{$D where C is a

conjunction of atomic formulas having a tuple z = (z1,...,z,) of free
variables. D is called the domain expression and has the form x € b where
b is the Cartesian product of the domains of x1,...,x,.

e The semantics of CSPs is determined by assigning to C'<)D as meaning
the first-order predicate logic sentence 3z.(C'AD). In any particular use of
CSPs we assume an application-specific theory, for example a theory for
the reals and for floating-point intervals. A CSP is solvable if its meaning
is logically implied by the assumed application-specific theory.

e A CSP C{(x €b) is failed if b is empty.

e A solution of a CSP is a tuple 7 such that (C' A D)[x/7] (see footnote®)
is a logical consequence of the assumed application-specific theory.

e Let C; and Cy be CSPs with the same tuples of free variables. We say
that C1 refines Cy if any solution of C is a solution of Cs.

® The notation (C'AD)[x/7] suggests that a domain element, that is, a nonsyntactic
object, be substituted for a variable, which is a syntactic object. Taken literally,
this is nonsense. However, there is sound intuition behind this nonsense, as proved
by the fact that, if one handles this with care (see e.g. [11,13]), the desired result
is achieved anyway.
Curiously, Shoenfield [25] tries to avoid the difficulty by assuming that there is
a constant in the language for every domain element. As any reasonable language
would have a countable set of names, axiomatization of a domain such as the reals
seems to be ruled out.



1 The logic programming paradigm in numerical computation 13

1.5.2 CSPRs

So far CSPs in general. We continue by considering CSPRs: CSPs over the
reals. Here the variables range over the reals. Hence the domains® are sets of
reals. However, in the interest of practical computer implementation, not all
sets of reals can occur as domain: only intervals of reals with floating-point
numbers as bounds. These are intervals that are either unbounded (on one
or on both sides) or bounded. Any bound that may occur in an interval is
one of a finite set of real numbers that can be represented in the floating-
point number format of a computer. Such reals are called “floating-point
numbers”. As the empty set is also counted as an interval, we have that the
set of floating-point intervals is closed under intersection. Clearly, for any
set S of reals there is a unique least floating-point interval (denoted bz(S))
containing S.

In CLP(R) we have assumed a conventional theory of the reals. It has
equality and inequality as only predicate symbols. It has function symbols
for addition, subtraction, multiplication, and division. In a CSP however, we
assume that the constraint conjunction is based on a different vocabulary: no
function symbols and two additional predicate symbols sum and prod. Their
intended interpretation is such that prod(z,y, z) iff z is the product of 2 and
y, and similarly for sum(x,y, z). Constraint conjunctions of CLP(R) can be
translated to those of CSPR (usually introducing auxiliary variables) and
vice versa. In practice it is desirable to use a theory of reals with additional
symbols for commonly used functions such as exponentiation, logarithms,
and trigonometric functions.

It is the task of the inference system for CSPRs to obtain a maximally
informative ID expression for a given ND formula. We first discuss inference
rules. In the section following the next, we present the inference system in
which the rules are used.

Inference rules To obtain a maximally informative description, we need
to make the domains for the variables small as possible. This can be done
by inference rules that transform a CSP into a refinement of it. With every
predicate (including at least equality, inequality, sum and product) there
is associated a domain-reduction inference rule. We will only show a single
example here.

Domain-reduction rule for the prod predicate Let C{Dy be a CSP where C
contains the atom prod(z,y, z) and where the floating-point intervals X, Y,
and Z are the projections of Dy on x, y, and z. The domain-reduction rule
for prod infers C'{p Dy from C<OD1. Do is such that all its projections are the

5 “Domain” means universe of discourse in logic semantics and in the CLP scheme.
In constraint processing it has a different meaning: set of values for a variable
that are still possible at a certain stage of computation.



14 M.H. van Emden

same as the corresponding ones of D except possibly for those on x, y, and
z, which are shown in the table in Figure 1.1. The operations * and / on
intervals are defined in interval arithmetic”.

Projection on|D; | Do
x X | bz(XN(Z/Y))
y Y |bzx(Y N (Z/X))
z Z |bx(ZN (X *xY))

Fig. 1.1. Effect of domain-reduction inference rule for prod on intervals of CSPR.

If domains were not restricted to floating-point intervals, then the projec-
tions of Dy would simply be XN (Z/Y), Y N(Z/X),and ZN (X *Y). In the
interest of implementability we replace these sets by the smallest floating-
point intervals containing them. This containment ensures the soundness of
the inference rule.

The set X * Y is typically not a floating-point interval, though it is a
real interval. This is a mathematical way of saying that rounding errors are
typically made when multiplying floating-point numbers. The set Z/Y may
not even be a real interval. As inference rules have to yield intervals, these
sets have to be converted to intervals. As inference rules have to be sound,
the resulting intervals have to contain these sets. Hence the occurrence of the
bz function in the table of Figure 1.1.

In the following we will repeatedly refer to Cartesian products of intervals.
We will call such a product boz.

Other domain-reduction rules There is a corresponding domain-reduction
rule for the sum predicate, again based on interval arithmetic. In CSPR,
every predicate comes with a domain-reduction rule. Hence also the equality
and inequality predicates. These rules are not based on interval arithmetic.

The splitting rule A domain-reduction rule is a directly productive way of
achieving our objective: by making a box smaller, it increases information
about the location of solutions. But it may happen that no domain-reduction
rule has an effect. In that case we turn to the splitting rule an inference
rule that is not productive in that sense. It may be indirectly productive by
producing CSPs on which domain-reduction rules do have an effect.

The splitting rule replaces CO(x € b) by CO(x € by) and CO(x € by) such
that b C (by Uby). We would like to have b = (b; Ubs) and by Nby = @, but the
limited supply of floating-point intervals may only allow an approximation
to this ideal. Both b; and b, are strictly smaller than b.

" Except that modifications are needed accommodate division by an interval con-
taining zero. See [16].



1 The logic programming paradigm in numerical computation 15

We assume that any given CSPR comes with a splitting strategy, with as
parameter a real number € > 0. The splitting strategy is a partial function
on boxes that, if defined on a box b, yields two boxes by and by as described
above, of at least approximately equal size.

Given a box b and such a splitting strategy as partial function, there is a
uniquely determined binary tree with b as root where each non-leaf node x
has as children the boxes that result from splitting x. The finiteness of the
set of floating-point numbers, hence of intervals with floating-point numbers
as bounds, hence of finite Cartesian products of such intervals, helps ensure
that any splitting strategy’s binary tree is finite.

An inference procedure We describe an inference procedure for CSPRs
that consists of constructing a search tree with an initial CSPR of the form
CO(x € R™) as root and having as leaf nodes the CSPRs CO(x € by), ...,
C<>($ S bk>.

We first describe the auxiliary concepts. Then we present an algorithm to
define the search tree of the inference system. This algorithm is only suitable
for definition and is not intended for execution. Finally, we state what ND/ID
sentence is proved by the inference procedure.

NC test A CSP can be sometimes be shown to be unsolvable by showing that
it fails to satisfy a Necessary Condition (hence “NC test”) for solvability.
This is useful because some necessary conditions can be tested with little
computational effort. An example in a CSPR of the form C{(z € b) is
to substitute the projections of b for the corresponding variables in C' and
then to evaluate C' according to interval arithmetic. A necessary condition
for solvability of C{(x € b) is that this evaluation comes out true. This is
essentially the “Box(0) consistency” of Puget and Van Hentenryck [23].

Stabilization Every CSP has a fixed repertoire of domain-reduction rules.
When these are applied sufficiently many times, a limit CSP is reached that
is invariant under all domain-reduction rules. The limit is independent of the
order of applying these rules, provided the order is a fair one; for details see
[20,26,2]. This process is also called constraint propagation.

For any given CSP, call it X, constraint propagation to the limit yields
a uniquely determined stable CSP. Let us define the stabilization operator
applied to X as the one that gives this uniquely determined stable CSP.

Search Tree For given NC tests and splitting strategy, the search tree for a
CSP is a binary tree of CSPs defined as follows.

1. Obtain the binary tree corresponding to the given CSP and splitting
strategy.

2. In the resulting tree, apply to each node the NC tests. If the result is
failure, mark the node F.



16 M.H. van Emden

3. Apply the constraint propagation operator to each node not marked F'.
If the operator results in failure, then mark the node F'.
4. while there exists a node N that is not marked F
and that has two successors marked F
do apply mark F' to node N
5. while there exists a node NV marked F
do remove subtree rooted at N
6. while there exists a node N
with two successors that are leaf nodes
do remove these two leaf nodes

This algorithm only serves to facilitate the definition of the search tree.
Any algorithm intended for execution will of course be much more efficient.
The procedure solve of BNR Prolog [5] is a simple depth-first traversal of what
our search tree would be if we had omitted the last step. Although solve is
satisfactory in leaving out all failed nodes, it has the shortcoming of reporting
adjacent non-failed nodes of what remains of the search tree according to our
definition before the last step. This makes solve much less useful: it produces
long listings of non-failed nodes that turn out to be replaceable by a single
one. This is what the last step in our definitional algorithm improves upon.

What does the inference system prove? The above inference system is
intended to have the following

Property 1. Let by,...,b; be the boxes at the leaf nodes of the search tree
for a CSP of the form C{$(x € R™). Then the ND/ID sentence Va.(C' =
(b1 V--- Vb)) is a logical consequence of the theory of reals in conjunction
with the theory of floating-point numbers.

In principle the proof should be simple: the property claimed holds for the
search tree after the first step in the definition algorithm. All that happens in
the first step is splitting up the original search space R™ into sufficiently small
boxes without loss of a single point. Each next step, if correctly implemented,
removes parts of the search space that do not contain any solution.

An actual proof may, however, be a complex affair. It will have to depend
not only on an axiomatization of the reals, but also on certain aspects of
floating-point numbers.

1.6 Related work

BNR Prolog [5] has combined Prolog with interval constraints. From the
documentation available to us, it is a conventional Prolog where the un-
sound conventional floating-point arithmetic has been replaced by interval
constraints.



1 The logic programming paradigm in numerical computation 17

For all we know, we may have been introducing Prolog IV. Whether or not
that is the case is not easy to tell from the documentation [3] we have studied.
The same holds for the Newton system [14]. For either system, presenting it
explicitly as a sound CLP(R) may only be a formality.

The inference rules are modelled on those of Apt [1] for arithmetic con-
straints on integers. If his system is interfaced with the CLP scheme the same
way CSPRs are in this paper, one would a get reconstruction of the CHIP
system [10].

If Newton-like methods were used to enhance the NC tests and the con-
straint propagation in our inference system, the same search tree would be ob-
tained as in Puget and Van Hentenryck [23]. In addition, they use Brouwer’s
fixpoint theorem to positively identify intervals containing at least one solu-
tion, or exactly one solution. Without such help from outside of the world of
constraints one can only eliminate space as not containing any solution, so
that answers are always conditional on there existing a solution.

Finally, there are the Russians. Many of the methods of interval con-
straints on reals were developed in Russia independently of work in the West
under the name “subdefinite computation”. Sources of pointers to this tradi-
tion are [24]. We do not know whether it has been determined who did what
first in interval computation.

1.7 Conclusions

We have proposed to extend CLP(R) to a sound version by means interval
constraints. As mechanism for interfacing the CLP scheme with interval con-
straint propagation, we proposed a version of Apt’s proof-theoretic model for
discrete constraint propagation. To do this, it was necessary to propose a
logic specification of the example chosen, namely solving a single equation in
a single variable. We conjectured that the ND/ID formulas introduced here
will serve the same purpose in other numerical problems.

This work brings up a few related more general topics that we wish to
discuss in the remainder of this section.

“Logic and numbers don’t miz”? There is a widespread perception that logic,
and therefore rigorous result verification, belong in the discrete world, which
is disjoint from the world of continuous change where variables are real num-
bers. This perception has had several consequences. At the side of scientific
modelling there has been a reluctance to state formally what it means for
computer output to be an acceptable solution. At the side of program ver-
ification there has been a tendency to stay with discrete problems such as
verification of protocols and hardware.

This work has shown that CLP(R) can be extended to a sound version.
We hope that numerical analysts will find explicit and formal specification of
numerical problems a welcome resolution of existing ambiguities.



18 M.H. van Emden

Floating-point numbers, the untouchables of computer science From a dis-
tance, floating-point numbers look like an acceptable surrogate for the reals.
Close up they look horrible. There are only finitely many of them. Addition
and multiplication, which should be associative, aren’t. Multiplication, which
should distribute over addition, doesn’t.

Conventional numerical analysis has restricted its considerations to al-
gorithms over the reals which are at best heuristic approximations to what
happens during computer execution. Interval analysis has shown that with
a modest improvement of floating-point hardware, such as achieved by the
IEEE standard, one can extend mathematical reasoning to what is actually
printed out on an actual computer.

The reluctance to face up to the discrepancies between reals and floating-
point numbers has also infected logic programming: CLP(R) has ignored it.
We have shown that via interval constraints, CLP(R) can be extended to
cover the entire span from mathematical model in terms of reals at one end
to computer output at the other end.

Numerical analysis as an independent science? Van Wijngaarden [27] was one
of the few, before and after this 1966 publication, to deplore the ambiguous
logical status of results in the conventional practice of numerical computation.
As remedy he proposed to replace real analysis by a version more amenable
to the idiosyncrasies of floating-point computation. He sketched an axiomatic
re-foundation not only of numbers, but also of concepts of analysis such as
limit, derivative and integral.

Even if such an ambitious enterprise turns out to be feasible, we doubt
that mathematics will be enriched by it. The recent developments discussed
in this paper show that it is perfectly practical to use computer hardware to
derive true statements about reals that provide exactly the kind of informa-
tion that engineers and scientists need.

All that was needed for this breakthrough was the following.

1. Use the familiar observation that every function f from a set S to a set
T has a counterpart mapping the powerset of S to the powerset of T' (the
extension of f to the powerset [6]).

2. That most of what one wants to do with f can be done with its extension.

3. Computers, though hopeless at representing reals, are perfectly adequate
for representing sets of reals. The limitation of the computer manifests
itself in only being able to conveniently represent intervals bounded (if at
all) by a floating-point number. Computations can be arranged so that
rounding errors only make the set slightly larger. But the set of possible
values still contains the true value of the real-valued unknown concerned.

This has been the approach taken by the Russians with their subdefinite
computation [24].



1 The logic programming paradigm in numerical computation 19

1.8 Acknowledgements

Many thanks to Krzysztof Apt for initiatives, encouragement, and sugges-
tions for improvement. The comments of the referee resulted in considerable
further improvement. The Natural Science and Engineering Research Council
of Canada provided research facilities.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

K.R. Apt. A proof theoretic view of constraint programming. Fundamenta
Informaticae, 33(3):263-293, 1998.

K.R. Apt. From chaotic iteration to constraint propagation. In Proceedings of
the 24th International Colloquium on Automata, Languages, and Programming
(ICALP ’97), 1997.

Frédéric Benhamou, Pascal Bouvier, Alain Colmerauer, Henri Garetta, Bruno
Giletta, Jean-Luc Massat, Guy Alain Narboni, Stéphane N’Dong, Robert
Pasero, Jean-Frangois Pique, Touraivane, Michel Van Caneghem, and Eric
Vétillard. Le manuel de Prolog IV. Technical report, ProloglA, Parc Tech-
nologique de Luminy, Marseille, France, 1996.

Frédéric Benhamou and William J. Older. Applying interval arithmetic to real,
integer, and Boolean constraints. Journal of Logic Programming, 32:1-24, 1997.
BNR. BNR Prolog user guide and reference manual. Version 3.1 for Macintosh,
1988.

N. Bourbaki. Théorie des Ensembles (Fascicule de Résultats). Hermann, 1939.
J.G. Cleary. Logical arithmetic. Future Computing Systems, 2:125-149, 1987.
A. Colmerauer, H. Kanoui, R. Paséro, and P. Roussel. Un systéme de commu-
nication homme-machine en frangais. Technical report, Groupe d’Intelligence
Artificielle, Université d’Aix-Marseille 11, 1972.

E. Davis. Constraint propagation with labels. Artificial Intelligence, 32:281—
331, 1987.

M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf, and
F. Berthier. The constraint programming language CHIP. In Proc. Int. Conf.
on Fifth Generation Computer Systems, 1988.

H.B. Enderton. A Mathematical Introduction to Logic. Fletcher and Sons, Ltd,
1972.

George E. Forsythe. Pitfalls of computation, or why a math book isn’t enough.
Amer. Math. Monthly, 77:931-956, 1970.

Andrzej Grzegorczyk. An Outline of Mathematical Logic: Fundamental Results
and Notions Explained with All Details. D. Reidel, 1974.

P. Van Hentenryck, L. Michel, and F. Benhamou. Newton: Constraint program-
ming over nonlinear constraints. Science of Computer Programming, 1996.
Pascal Van Hentenryck, Laurent Michel, and Yves Deville. Numerica: A Mod-
eling Language for Global Optimization. MIT Press, 1997.

T. Hickey, Q. Ju, and M. van Emden. Using the IEEE floating-point standard
for implementing interval arithmetic. In preparation.

Patricia Hill and John Lloyd. The Gédel Programming Language. MIT Press,
1994.



20

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

M.H. van Emden

Joxan Jaffar and Michael J. Maher. Constraint logic programming: A survey.
Journal of Logic Programming, 19/20:503-582, 1994.

J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 2nd edition,
1987.

Ugo Montanari and Francesca Rossi. Constraint relaxation may be perfect.
Artificial Intelligence, 48:143-170, 1991.

Ramon E. Moore. Interval Analysis. Prentice-Hall, 1966.

D. Stott Parker. Monte Carlo arithmetic: an effective way to improve upon
floating-point arithmetic. Technical Report CSD-970002, Computer Science
Department, University of California at Los Angeles, 1997.

Jean-Francois Puget and Pascal Van Hentenryck. A constraint satisfaction
approach to a circuit design problem. Journal of Global Optimization, 13(1),
1998.

Alexander L. Semenov. Solving optimization problems with help of the Unicalc
solver. In R. Baker Kearfott and Vladik Kreinovich, editors, Application of
Interval Computations, pages 211-224. Kluwer Academic Publishers, 1996.
Joseph R. Shoenfield. Mathematical Logic. Addison-Wesley, 1967.

M.H. van Emden. Value constraints in the CLP Scheme. Constraints, 2:163—
183, 1997.

A. van Wijngaarden. Numerical analysis as an independent science. BIT,
6:66-81, 1966.



