
Algorithmic Power from Declarative Use of Redundant Constraints

M.H. van Emden
Department of Computer Science

University of Victoria
P.O. Box 3055, Victoria, B.C., V8W 3P6 Canada

Abstract

Interval constraints can be used to solve problems in nu-
merical analysis. In this paper we show that one can im-
prove the performance of such an interval constraint pro-
gram by the declarative use of constraints that are redun-
dant in the sense of not needed to define the problem. The
first example shows that computation of an unstable re-
currence relation can be improved. The second example
concerns a solver of nonlinear equations. It shows that,
by adding as redundant constraints instances of Taylor’s
theorem, one can obtain convergence that appears to be
quadratic.

1 Introduction

In certain forms of declarative programming, such as logic
programming, one is careful to include only just enough
clauses as are necessary to define the relations to be
queried. Violation of this rule is often punished by multi-
ple identical answers or even by an otherwise terminating
program becoming nonterminating1.

Constraint programming is different. Experience shows
that adding more constraints than necessary to define the
problem at worst makes finding solutions somewhat slower,
and often makes it considerably faster or more accurate.
This is the phenomenon that we study in this paper. In
the remainder of this introduction we outline what type
of constraint processing we are concerned with and what
type of application.

There are two approaches to constraint processing. In
both forms, the solutions to the constraint system are the
n-tuples that satisfy all constraints. In the first approach
one attempts to build up an individual n-tuple by using the
constraints to fill in single values for the as yet unassigned
variables. The second approach maintains at all times for
each variable the set of values that have not been shown

1There is an interesting exception: the addition of previously com-
puted results as redundant clauses. These can replace multistep de-
duction by a direct look-up. This technique is known as “memo-
ization” [17] or “tabling” [29, 7, 27, 8].

inconsistent. In this approach the associated sets always
contain all solution values. In this paper we are concerned
with this latter approach, the consistency method.

In the consistency method, computation consists of con-
straint propagation, which considers in turn each of the
constraints and removes values that are inconsistent with
the constraint. Propagation halts when none of the sets
changes. In this stable state, the remaining sets sometimes
identify the solution, or a sufficiently small set containing
a solution. If the remaining candidate sets are too large,
then disjoint constraint systems are spawned with more
restricted value sets. This disjunction process can be iter-
ated as much as required to yield sufficient accuracy in the
form of sufficiently small sets of possible values. In discrete
applications “sufficiently small” usually means being a sin-
gleton set. In real-valued applications it usually means an
interval of a width in the same order of magnitude as the
desired error in numerical analysis would be.

The consistency method has been used with great suc-
cess in operations research and in combinatorial problems
more generally [32, 16, 13]. Following Cleary’s pioneering
paper [10], the BNR Prolog team [6, 23, 24] showed that
the consistency method also has important advantages in
solving numerical problems. (That is, in solving constraint
problems where the unknowns are reals.) A theoretical
foundation was established in a report dated 1993, which
was recently published [5]. BNR Prolog is now available
as ALS Prolog. Other implementations are Prolog IV [4],
and Numerica [14]. Independently of this, and preceding
it, there is a long tradition in Russia of “subdefinite calcu-
lation” of which Unicalc [28] is a result.

2 Redundant constraints

Redundant clauses may not just slow down a logic pro-
gram, but often prevent it from terminating. The worst
that redundant constraints do seems to be a mild slowing
down. However, considerable improvements in accuracy or
in speed can result.

When the constraints are just enough to specify the so-

1



2

lution, it is often the case that a great deal of search is
necessary to obtain a solution. The phenomenon is that
if one adds redundant constraints to a minimal set suf-
ficient to specify the solutions, much, or sometimes even
all, search is avoided and a great savings in computation
results.

The method of redundant constraints has been exploited
with great effect in problems with discrete-valued variables
[13, 2]. An especially powerful example is Zhou’s use [33] of
redundant constraints to obtain what seems to have been,
at the time at least, the most efficient program for solving
job-shop scheduling problems. And this is a purely declar-
ative approach. Speed-ups in scheduling applications by
means of redundant constraints are also reported in [9].

In spite of such successes of redundant constraints in the
discrete consistency method, it seems that they have not
been used in the consistency method with real-valued vari-
ables. In this paper we show that redundant constraints
can also have worthwhile effects in this situation.

We present two applications, both to well-known prob-
lems in numerical analysis. The first concerns recurrence
relations, where instability can annihilate all information
about the solution. The second concerns solving a non-
linear equation, where we propose a constraint processing
counterpart of Newton’s method.

3 What are interval constraints?

In this section, we give a brief introduction to interval con-
straints, beginning with an example.

Let us consider the problem of computing the x and
y coordinates of one of the intersections of a circle and a
parabola. Thus we consider the interval constraint system:

x2 + y2 = 1 ∧ y = x2 ∧ 0 ≤ x (1)

This is a conjunction of three logical formulas related by
sharing x and y, which denote unknown reals.

The logical formulas are regarded as constraints on the
possible values of the unknowns. An interval constraint im-
plementation contracts intervals by removing values that
are inconsistent with the given constraints. As a result
all solutions, if any, are contained within the computed
intervals.

Complex constraints such as those occurring in the left-
hand side of the first formula of interval constraint sys-
tem (1) cannot be processed directly by efficient meth-
ods. Instead, the interval constraint system given in for-
mula (1) is translated to primitive constraints, as shown in
formula (2). The translation process introduces the auxil-
iary variables x2 and y2:

x2 = x2 ∧ y2 = y2 ∧ x2 + y2 = 1 ∧ y2 = x ∧ 0 ≤ x (2)

x + y = z
x ∗ y = z
xn = y for integer n
x = y
x ≤ y

Figure 1: Primitive Constraints.

The most commonly used primitive constraints are
shown in the table in Figure 1.

As each of the variables is regarded as an unknown real,
it is associated with an interval containing all values of this
real that occur in any solution. Rather than “solving” such
a system, one removes values from the intervals that are
inconsistent with the constraints. Of the various degrees of
consistency, it has been found that “local consistency” is
usually a feasible way of getting the intervals close the lim-
its of what the computer’s floating-point number system
can attain.

With each type of primitive constraint there is a con-
straint contraction operator that contracts the given in-
tervals for the unknowns occurring in the constraint by re-
moving inconsistent values. Iterating the contraction oper-
ator to achieve local consistency is called constraint propa-
gation. For more information about constraint contraction
operators and constraint propagation, see [5, 6, 31, 14].
Here we only show an example of the operator and give a
brief sketch of an algorithm.

An example of constraint contraction Consider, for
example, constraints of the form u + v = w, one of which
occurs in the example. Suppose that the intervals for u, v
and w are [0, 2], [0, 2] and [3, 5] respectively. Then all three
intervals contain inconsistent values. For example, v ≤ 2
and w ≥ 3 imply that u = w − v ≥ 1. Hence the values
less than 1 for u are inconsistent, in the conventional sense
of the word: it is inconsistent to believe the negation of
the conclusion of a logical implication if one accepts the
premise. Similar considerations rule out values less than
1 for v and values greater than 4 for w. Removing all
inconsistent values from the a priori given intervals leaves
the intervals [1, 2] for u and v and [3, 4] for w. The new
bounds 1 and 4 are computed according to the rules of
interval arithmetic and require the rounding direction to be
set appropriately. Thus the method of interval constraints
depends on interval arithmetic [1, 12, 20].

A sketch of a propagation algorithm An interval
constraint system performs an interval contraction for each
of the primitive constraints. In the untypical case that con-
straints do not share variables, the contraction operator
has to be applied only once. Any application in a situa-



3

tion where the intervals have not changed since the last
application has no effect. Because of this, the contraction
operator is deactivated after being applied.

However, constraints typically share variables. As a re-
sult, contraction has to be performed multiple times on
any given constraint: every time another constraint causes
the interval for a variable to contract, all constraints con-
taining that variable have to be activated again. Be-
cause changes are always contractions and because interval
bounds are floating-point numbers, a finite number of con-
tractions suffices to reach a state where all constraints yield
a null contraction. The constraint propagation algorithm
terminates when this is found to be the case.

There are several variants of propagation algorithms.
See [18, 16, 5, 19].

As the consistency method only removes inconsistent
values and may not remove all such values, it may be that
the resulting intervals contain no solution. As a conse-
quence, results of constraint propagation have the mean-
ing: if a solution exists, then it is in the intervals found.

A numerical example For example, let us solve the
system (1) with BNR Prolog, starting with [0, 1] for x
and y. In this case the initial interval happens to be
a stable point for the propagation algorithm. A sin-
gle bisection step is sufficient in this case to let prop-
agation proceed to machine precision. Actually, it suf-
fices for the lower bound for x to be increased from
0 to 0.0000001 to obtain as intervals for x and y
respectively [0.786151377757422, 0.786151377757425] and
[0.618033988749893, 0.618033988749897].

4 Unstable recurrences

In one of the first quantum-mechanical investigations of the
water molecule, Coolidge [11] needed to evaluate c(n) =∫ 1

0
xnexdx for n = 1, 2, . . . Integration by parts yields the

recurrence relation c(n + 1) = e− (n + 1) ∗ c(n). Applying
this to the known value of c(0) = e − 1 gives, in a typical
combination of compiler and processor, a sequence such
as that in Figure 2. In this figure we only show correct
decimals up to c(18). From there onwards, the numerals
are marked with an asterisk to indicate that no decimals
are correct. This is easy to see, as 0 ≤ c(n) ≤ 1 for n > 0.
The incorrect decimals are shown to give an indication of
the rapidly increasing error.

When we realize that c(n) is monotone decreasing and
that 0 < c(n) < 1 from n = 2 onwards, it is clear that the
accuracy deteriorates rapidly: the recurrence is unstable.

As an interval constraint system cannot tell a lie (in the
sense that only inconsistent values are removed from the

c( 0) ~ 1.71828182845905
c( 1) ~ 1.0 (exact)
c( 2) ~ 0.718281828459045
c( 3) ~ 0.56343634308191
c( 4) ~ 0.464536456131406
c( 5) ~ 0.3955995478020
c( 6) ~ 0.344684541647
c( 7) ~ 0.305490036930
c( 8) ~ 0.274361533016
c( 9) ~ 0.24902803132
c(10) ~ 0.2280015153
c(11) ~ 0.21026516
c(12) ~ 0.1950999
c(13) ~ 0.181983
c(14) ~ 0.17052
c(15) ~ 0.1604
c(16) ~ 0.15
c(17) ~ 0
c(18) ~ -0.2 (*)
c(19) ~ 6.6 (*)
c(20) ~ -129.3 (*)

Figure 2: Result of typical combination of compiler and
processor to compute c(0) = e−1, c(n+1) = e−(n+1)∗c(n)
without intervals.



4

candidate intervals), it is interesting to use this method to
obtain information about the values of these integrals.

We have used BNR Prolog [22] to run the examples of
this paper. For those not familiar with Prolog, first a few
words about the syntax of this language. Function defi-
nitions are organized around the symbol :-. To the left
of :- is the function heading; to the right is the func-
tion body. Function bodies consist of function calls inter-
spersed with constraints. The latter are distinguished by
being surrounded by braces. Functions may have multiple
definitions. They get tried in the order as written. Execu-
tion of a function body consists of performing the function
calls as defined or adding the constraints to the constraint
store. Thus Prolog acts like a programming front end to a
constraint solver. It allows one to generate parametrized
constraints according to possibly recursive definitions.

We have used BNR Prolog to set up an interval con-
straint system consisting of c(0) = e − 1 and c(n + 1) =
e− (n+1)∗ c(n) for n = 0, . . . , 19. This was done with the
following program:

//E is Euler’s constant 2.718...
euler(E)
:- X: {real(2.718281828459045,

2.718281828459046), X = E}.

sequence(N,N,X,Z,[X|Z]).
sequence(K,N,C1,L,Z)
:- K < N, N1 is K+1,

{C2: real}, euler(E),
{C2 = E - N1*C1},
sequence(N1,N,C2,[C1|L],Z).

result(W)
:- euler(E), {X: real, X = E-1},

sequence(0,20,X,[],Z), reverse(Z,W).

Each instance of c(n + 1) = e − (n + 1) ∗ c(n) is
translated to the constraint C2 = E - N1*C1 and added
to the constraint store. The recursively defined pred-
icate sequence creates a list containing c(n) for n =
0, . . . , 20. This list is, after some formatting, shown
in Figure 3. Intervals are given in condensed nota-
tion. For example, 0.5634363430819 [02,16] stands for
[0.563436343081902,0.563436343081916].

The above inclusions hold in spite of the rounding errors
made in computing the bounds. The instability of the
recurrence relation shows by the intervals becoming too
wide to be of use. That is, we have a true statement about,
say, c(20), but it gives no useful information.

In constraint programming, when confronted with such
a situation, one should consider adding a redundant con-
straint. For example, from the definition c(n) =

∫ 1

0
xnexdx

c( 0) = 1.7182818284590 [4,5]
c( 1) = [0.999999999999999,1.0]
c( 2) = 0.71828182845904 [3,8]
c( 3) = 0.5634363430819 [02,16]
c( 4) = 0.464536456131 [381,439]
c( 5) = 0.39559954780 [1852,2141]
c( 6) = 0.344684541646 [198,7936]
c( 7) = 0.3054900369 [23494,35662]
c( 8) = 0.27436153 [2973746,3071092]
c( 9) = 0.24902803 [0819221,1695329]
c(10) = 0.2280015 [11505755,20266836]
c(11) = 0.210265 [105523847,201895746]
c(12) = 0.195 [099405710093,10056217288]
c(13) = 0.1819 [74520211601,89554227843]
c(14) = 0.170 [428069269244,638545496629]
c(15) = 0.1 [58703646009609,61860789420381]
c(16) = 0.1 [28509197732957,79023492305296]
c(17) = [-0.32511754073098,0.533625466998779]
c(18) = [-6.88697657751898,8.57039756161668]
c(19) = [-160.119271842258,133.57083680132]
c(20) = [-2668.69845419793,3205.10371867362]

Figure 3: Result of propagation from constraints obtained
from the unstable recurrence. No redundant constraint
used.



5

c( 0) = 1.7182818284590 [4,5]
c( 1) = 1.0 []
c( 2) = 0.71828182845904 [5,6]
c( 3) = 0.5634363430819 [09,10]
c( 4) = 0.46453645613140 [7,8]
c( 5) = 0.3955995478020 [09,10]
c( 6) = 0.34468454164698 [7,8]
c( 7) = 0.3054900369301 [28,34]
c( 8) = 0.27436153301 [7974,8019]
c( 9) = 0.24902803129 [6873,7279]
c(10) = 0.2280015154 [86257,90312]
c(11) = 0.210265158 [065618,110217]
c(12) = 0.195099931 [136445,671634]
c(13) = 0.1819827 [16727802,23685253]
c(14) = 0.170523 [696865499,794269819]
c(15) = 0.16042 [4914411766,6375476561]
c(16) = 0.1514 [59820834074,83197870783]
c(17) = 0.143 [067464655739,464874279783]
c(18) = 0.1 [35914091422952,43067464655739]
c(19) = 0. [0,135914091422952]
c(20) = [0.0,2.71828182845905]

Figure 4: Result of propagation from constraints obtained
from the unstable recurrence. The only difference with
Figure 3 is the addition of the redundant constraint 0 ≤
c(n) ≤ 3.

it is clear that, say, 0 ≤ c(n) ≤ 3. Accordingly, we modify
the above program so that the line

C2 = E - N1*C1,

becomes

C2 = E - N1*C1, 0 =< C2, C2 =< 3,

No other modifications are made. As a result the output
becomes as shown in Figure 4.

The differences between the tables in Figures 3 and 4 are
inconspicuous, but important. They occur in c(2) through
c(6). For example, the interval for c(2) has improved, even
though its width was in Figure 3 already down to about
10−15. And this improvement is caused by adding the
constraint 0 ≤ c(n) ≤ 3, which specifies an interval larger
by fifteen orders of magnitude.

In numerical analysis it is well-known how to get accu-
rate results in recurrences such as c(n + 1) = e− n ∗ c(n).
Here the inevitable rounding error is multiplied by n at
each stage, thus increasing exponentially. A remedy is
to apply the recurrence in the backward direction, as in
c(n) = (e − c(n + 1))/(n + 1). This backward recurrence

could be started at, say n = 100. Any error in c(100)
rapidly becomes negligible when one applies the backward
recurrence.

All this is simple, and widely known. The point
is that, with interval constraints, such analysis is not
needed: an obvious redundant constraint is sufficient to
remedy the problem. This addition (of the redundant con-
straints 0 =< C2, C2 =< 3) is the only change required.
In particular, the forward form of the recurrence, namely
C2 = E - N1*C1, does not need to be changed to the back-
ward form.

Such a degree of declarativity helps make numerical com-
putation safe for non-analysts. To judge our success at
increasing precision, we only need to look at the width of
the intervals.

A final note on what happens for systems larger than
the one for c(0), . . . , c(20) discussed so far. It is instruc-
tive to set up the same interval constraint system in all
respects, except that the constraints are generated for
c(0), . . . , c(100). To distinguish the two systems, we will
denote them c20(0), . . . , c20(20) and c100(0), . . . , c100(100).

Without the redundant constraints, we found that it
takes longer for c100 to build up wide intervals: c100(49) is
the first that has an interval wider than c20(20).

With the redundant constraints, it takes much longer for
wide intervals to appear: c100(91) is the first interval that
is as wide as the one for c20(6). Thus, the short sequence
c20 is misleading. It gives the impression that most of the
intervals are wide. c100 suggests that only the last dozen
or so have wide intervals.

This is to be expected when one sees the analysis that
leads conventional computation to choose the backward
version of the C2 = E - N1*C1. This analysis is also ap-
plicable to interval constraint systems, as the translation
to primitive constraints combined with constraint contrac-
tion gives the effect of both forward and backward com-
putation. The redundant constraint is applied everywhere,
therefore also at c100(100). The coupling of the constraints
then causes the same effect as the use of a backward recur-
rence. This would suggest that it is the distance from the
last constraint that determines the width of the intervals.
According to this suggestion, intervals would start to get
larger from c100(86) onwards. In fact, it only happens from
c100(91) onwards.

Similarly, c100 behaves better without the redundant
constraint. We have no explanation for this improvement,
except for the general observation that a larger constraint
system never has fewer opportunities for constraint con-
traction.



6

5 Solving nonlinear equations

As next example of the power of redundant constraints,
let us consider finding roots of a function f and compare
Newton’s method, as used in numerical analysis, with how
this problem can be solved effectively and elegantly with
redundant constraints.

In interval constraints all one needs to do is to enter the
constraint f(x) = 0. Constraint propagation gives an in-
terval for x, usually not the smallest, containing all roots.
In case there are no roots, a nonempty interval may still
be returned: remember that only inconsistent values are
removed, and many non-root values for x are not inconsis-
tent. To go from such a large interval to small intervals for
the typically existing multiple roots of a nonlinear equa-
tion, one splits the interval initially obtained, and spawns
separate interval constraint systems for each of the two
halves. Such splitting is repeated as far as necessary to
obtain intervals of the desired small width.

This process is to be compared to the usual bisection
method in numerical analysis (for a generic reference, see
[26]). To obtain faster convergence, numerical analysis uses
Newton’s method [26]. We first derive Newton’s method
and then show how redundant constraints can yield a ver-
sion of Newton’s method that is an improvement in being
both more declarative and more effective.

6 Newton’s method

Newton’s algorithm for finding a zero of a one-variable
function is heuristically justified by Taylor’s theorem,
which, in its general form, states that for all reals x and x0,
and for all f : R → R that have the required continuous
derivatives,

f(x) =
n−1∑
i=0

f (i)(x0)
i!

(x− x0)i +
f (n)(ξ)

n!
(x− x0)n, (3)

where ξ is a real between x and x0. Among hundreds of
alternative sources, I just mention my favourite, which is
[15].

In the general form of Newton’s method, we take for x a
root of f , so that f(x) = 0. We assume that x0 is a good
approximation to this root, so that |x− x0| is small. That
might suggest discarding the remainder term, so that one
gets

0 ≈
n−1∑
i=0

f (i)(x0)
i!

(x− x0)i.

Solving this for x − x0 gives an estimate for the root x,
because x0 is known. In general, this solving process is
fraught with numerical difficulties, even for n as small as

3. That is why, to obtain Newton’s algorithm, one takes
n = 2, giving

0 ≈ f(x0) + (x− x0)f ′(x0).

Solving this for x gives the following formula for improving
an estimate x0 to x1:

x1 = x0 −
f(x0)
f ′(x0)

,

which is the usual form of Newton’s method.

7 Redundant constraints for find-
ing roots

Let us look at the problem of finding roots with the knowl-
edge that an interval constraint system can be made more
effective by the addition of redundant constraints. As in
the example of the unstable recurrence, we have a con-
straint system that completely defines the solution, in this
case f(x) = 0. The knowledge that Newton’s algorithm is
to a certain extent effective and is based on the Taylor ex-
pansion of f might then suggest that we add as redundant
constraint the result of applying a Taylor expansion to the
f(x) in f(x) = 0, which is the statement of the problem.

An unsatisfactory feature of Newton’s method is the ne-
cessity to use a truncated form of the Taylor expansion:

f(x) ≈ f(x0) + (x− x0)f ′(x0).

Unsatisfactory because either we have the undefined rela-
tion ≈ or, if we regard this relation as equality, we have a
false assertion of which we hope that the consequences are
not too serious in the vicinity of the root.

The declarative nature of interval constraints allows us
to copy straight from the calculus book [15]:

f(x) = f(x0) + (x− x0)f ′(ξ) (4)

where
(x0 ≤ ξ ≤ x) ∨ (x ≤ ξ ≤ x0). (5)

So far, no algorithm. Constraint processing algorithms
do arise when we want to automate the construction of
the interval constraint system to be solved. Here we have
to decide which instances of (4) to include in our inter-
val constraint system. We can look for an advantageous
choice of x0. As we obtain more information about the
location of a zero, we will have successively more advan-
tageous values and add redundant constraints accordingly.
This suggests the following meta-algorithm for finding so-
lutions of f(x) = 0.



7

Taylor Constraints algorithm
solve f(x) = 0 yielding interval X for x with midpoint m;
while width(X) > ε do

add the constraints (4) and (5) with x0 = m;
solve the resulting interval constraint system

The disjunction (5) is handled in the usual way: two
independent interval constraint systems are created. Such
a split occurs every time such an instance of Taylor’s the-
orem is added. Most of the alternative interval constraint
systems thus generated are terminated because of incon-
sistency. The ones that remain are small gaps between
zero-free segments of the real line.

Thus we obtain a global algorithm for locating zeros by
merely adding instances of a declarative statement of a
mathematical theorem. The only algorithmic component
of the process is that x0, the undetermined parameter in
the theorem, is chosen to be the midpoint of the current
interval for the zero.

A program for Taylor Constraints The above infor-
mal description of the Taylor Constraints method can be
expressed in a BNR Prolog [22] program as shown in Fig-
ure 5.

The disjunction (5) in Taylor’s theorem finds a natural
translation to :

between(X,Xsi,X0) :- {X =< Xsi, Xsi =< X0}.
between(X,Xsi,X0) :- {X >= Xsi, Xsi >= X0}.

This translation is a declarative definition of a relation
between three reals. In BNR Prolog it has an algorithmic
effect. Suppose that X0 is the middle of the interval for X,
as it is in the program of Figure 5. The effect is that the
existing interval for the zero is bisected and that alterna-
tive interval constraint systems are generated for each half.
This is exactly what is programmed explicitly in other al-
gorithms for finding roots. Here it happens automatically
by the action of a general-purpose inference system acting
on a purely declarative statement of a theorem.

Numerical example. In response to the query
?- go(Z). the program in Figure 5 prints out the following
bounds for Z:

-1.0e+100 1.0e+100
-1.50916975768387 4.18727501261463
-0.838271496392374 1.33905262746538
0.250390565536504 1.33905262746538
0.794721596500944 1.33905262746538
0.794721596500944 1.06688711198316
0.976444490412722 1.02173699672681
0.999995450894563 1.000004590866
0.999999999999997 1.0

f(X,Y) :- {Y = X**4-4*X**3+4*X**2-4*X+3}.
/* Has roots 1, 3, i and -i. */
f1(X,Y) :- {Y = 4*X**3-12*X**2+8*X-4}.
/* First derivative. */

between(X,Xsi,X0) :- {X =< Xsi, Xsi =< X0}.
between(X,Xsi,X0) :- {X >= Xsi, Xsi >= X0}.

/* taylor1(X): add first-order instance of
Taylor’s theorem.

*/
taylor1(X)
:- X0 is midpoint(X), {Xsi: real},

between(X,Xsi,X0),
{Y: real}, f(X0,Y),
{Y1: real}, f1(Xsi,Y1),
{0 = Y + (X-X0)*Y1},
/* After applying Taylor constraint */
print(X), nl.

eps(0.0000000000001). /* for example */

/* taylor(Zero): if the interval for Zero is
too large, then add as constraint the
first-order instance of Taylor’s theorem.

*/
taylor(Zero)
:- W is delta(Zero), eps(Eps), W =< Eps, !.
taylor(Zero) :- taylor1(Zero), taylor(Zero).

go(Zero)
:- {Zero: real}, print(Zero), nl,

f(Zero,0),
print(Zero), nl, taylor(Zero).

?- go(Zero).

Figure 5: A BNR Prolog program for first-order Taylor
Constraints.



8

The second interval is the one resulting from f(x) = 0
by itself. The third results from adding a Taylor constraint
for the first time. The next three intervals are still so wide
that only bisection applies. We can tell, because one of the
bounds is still the same as in the previous interval. Only in
the last three do both bounds improve and here we see the
doubling of the number of correct decimals that is typical
of quadratic convergence.

When one asks BNR Prolog for a next answer, it con-
tinues with:

1.33905262746538 4.09043708443892
1.33905262746538 2.71474485595215
2.71474485595215 3.62336210458554
2.71474485595215 3.16905348026885
2.97523430587216 3.0718221396914
2.99655297044649 3.00253251842071
2.99999901641466 3.00000098679923
3.0 3.0

The same quadratic convergence shows.

8 The effect of Taylor constraints
as redundant constraints

In our example of an unstable recurrence we presented a
controlled experiment demonstrating the effect of redun-
dant constraints: we compared two versions of a program
only differing in the presence of the redundant constraint.
For the problem of solving an equation, we showed in the
previous section that a quadratically convergent sequence
of intervals for a root can be obtained by adding suitable
instances of Taylor’s theorem to the logically minimal def-
inition f(x,0) of the zero.

But roots of equations can also be obtained to the same
degree of precision by repeatedly applying the definition
f(x,0) in disjoint intervals, without the use of Taylor con-
straints. Thus what is still lacking is a controlled experi-
ment as in section 4: results from two versions of the same
program, computing a root to the same precision, only dif-
fering in the presence of the redundant Taylor constraint.
In this section we present such a comparison.

Figure 6 shows a BNR Prolog program that computes
the roots of the equation specified by f(x,0) to the preci-
sion determined by the argument of eps. The Taylor con-
straint is commented out. Therefore, in the version shown,
the root is computed without the use of Taylor constraints;
only on the basis of the defining constraint f(x, 0), which
occurs in the definition of split. This we call Version
A. When the comment delimiters are removed, the Taylor
constraints kick in; that is Version B.

The predicate splittable(X,M) (definition omitted)
checks whether the interval for X is wide enough to be

f(X,Y) :- {Y = X**4 - 12*X**3 + 47*X**2 - 60*X}.
f1(X,Y) :- {Y = 4*X**3 - 36*X**2 + 94*X - 60}.

eps(0.0000000001).

split(X) :- f(X,0), split1(X).

split1(X) :- splittable(X,M),!,split2(X,M).
split1(X).

split2(X,M)
:- forget(count(N)), N1 is N+1,

remember(count(N1)),
{X =< M},

/* {[Xsi,FM,F1Xsi]: real, X =< Xsi, Xsi =< M},
f(M,FM), f1(Xsi,F1Xsi),
{0 = FM + (X-M)*F1Xsi}, */
split1(X).

split2(X,M)
:- forget(count(N)), N1 is N+1,

remember(count(N1)),
{X > M},

/* {[Xsi,FM,F1Xsi]: real, M =< Xsi, Xsi =< X},
f(M,FM), f1(Xsi,F1Xsi),
{0 = FM + (X-M)*F1Xsi}, */
split1(X).

q(T,N)
:- new_state(0), new_state(1000),

T is cputime,
remember(time(T)), remember(count(0)),
{X: real}, split(X), fail.

q(T,N)
:- recall(time(T1)), T is cputime-T1,

recall(count(N)).

Figure 6: Program for computing the roots of the equation
specified by f to the precision determined by the argument
of eps.



9

version A version B
epsilon msec nodes msec nodes
1 60 18 675 18
10−1 270 130 1975 74
10−2 1320 530 2725 94
10−3 2396 912 2501 94
10−4 4021 1418 2755 98
10−5 4911 1806 2766 98
10−6 6252 2190 2651 100
10−7 7867 2700 2581 100
10−8 8446 3088 2911 102
10−9 9532 3476 2816 104
10−10 10832 3988 3045 104

Figure 7: Test results

split, and, if so, makes M the midpoint of that interval.
The intended query for this program is

?- q(Time,Nodes).

The answer will substitute for the variables the number of
milliseconds taken and the number of splits effected. The
definition of q(T,N) accumulates these data by updating
extra-logical state variables so that their values are pre-
served under backtracking. The first clause for q(T,N)
forces failure in order to suppress output.

The clause

split(X) :- f(X,O), split1(X).

sets up the constraint f(X,0) defining the solutions and
then uses split1(X) to generate additional constraints
forcing X to belong to subintervals of the original inter-
val for X. In this way the original interval is searched for
solutions.

This search is effected by adding to the existing interval
constraint system either the constraint X =< M or the con-
straint X > M, where M is the middle of the original interval
for X. If either fails, then we have proved that no root is
contained in the half thus defined. In case of nonfailure,
the same search continues recursively until the interval for
X is no wider than the argument of the predicate eps.

The predicates forget, remember, and recall use
BNR Prolog’s extra-logical state-recording information. It
causes a term count(N) to be updated every time a node
of the search tree is created.

Discussion of measurements In the table in Figure 7
version A and version B are compared as to the required
computing time and number of splits effected (nodes in
the binary tree of subintervals). Each line reports one run
for each version, with the same accuracy required of both
versions. These accuracies run from 1 to 10−10.

The binary tree of subintervals contains 2 ∗ 2n− 1 nodes
if n is the depth of the tree (we count the depth of a tree
consisting of one node as 1). With the smallest epsilon, n
is about 30. The number of nodes visited is a very small
fraction of the total number nodes in the tree. Interval con-
straints, augmented or not with Taylor Constraints, prune
this tree very effectively.

At low accuracies, there is no scope for quadratic conver-
gence. Hence, at low accuracies, version B has no advan-
tage; it has only the disadvantage of the extra processing
required by the Taylor constraint. At higher accuracies,
the effect of the redundant Taylor constraint is sufficient
to more than offset this extra processing and to net an
overall gain in time equal to a factor of about three.

One can summarize these findings by observing that the
Taylor constraint achieves a drastic reduction in the num-
ber of nodes visited at the expense of an increasing amount
of processing per node. Version A has a more or less con-
stant amount of processing per node, and suffers from a
linearly increasing number of nodes visited. Version B has
a more or less constant number of nodes visited. The prun-
ing is achieved at an increasing cost per node. However,
this increase is considerably slower than the increase in the
number of nodes visited by Version A.

Note that constraint propagation, even without the Tay-
lor constraint (Version A), is already pretty impressive: its
search space grows approximately linearly with the expo-
nent in epsilon.

9 Related work

The interval Newton method [20, 21] represents an inter-
esting stage in between the original Newton method and
our contribution of using Taylor’s theorem as redundant
constraint. Interval Newton is an improvement on its pre-
decessor, which merely drops the remainder term in the
Taylor expansion. Interval Newton uses a correct version
of Taylor’s theorem by substituting an interval for the re-
mainder term. However, though this substitution is cor-
rect, it discards some information that is present in the
original form. The Taylor Constraints method described
here may be the first that both achieves correctness and
avoids information loss by using the original form of the
theorem. For a more detailed comparison, see [30].

Interval constraints, being based on the consistency
method, only removes inconsistent values. As a result, one
is not assured that a root occurs in the final interval. One
only knows that all roots, if any, are contained in the union
of the final intervals. Experience shows that if final inter-
vals are small, they almost always do contain a root. A
unique feature of Interval Newton is that in many cases it
can confirm conclusively that an interval contains at least



10

one root, or even that it contains exactly one root. The
method can also be incorporated into Taylor Constraints;
see [30].

A striking feature of Newton’s method is its asymptotic
quadratic convergence for simple zeros. Interval Newton
has this property as well. The examples shown in this
paper suggest that Taylor Constraints have the property
as well. A proof is beyond the scope of the present paper;
but see [30].

Benhamou, McAllester, and Van Hentenryck [3] also
use as starting point interval constraint propagation on
f(x) = 0. They observe that the result of constraint prop-
agation leaves an unnecessarily wide interval for x, and
use Newton’s method to compute an improvement on each
bound separately. Hence the quadratic convergence applies
to a precise location of the bound. It does not imply that
the width of the interval converges quadratically to zero,
which is a more useful property. This question does not
seem to have been addressed before.

10 Conclusions

Redundant constraints are a new area of investigation in
which it is not clear how to proceed. Below we discuss a
number of questions.

In what sense can a constraint be redundant? In
the example of the unstable recurrence it was clear what
the redundant constraint was, because by itself it did not
define the solution. Here the redundant constraint cannot
be otherwise, because it cannot serve as definition.

However, in the example of the Taylor constraint, either
the original constraint by itself or the Taylor constraint by
itself can define the solution. We designated the latter as
the redundant one only because it is not the simplest.

How should one investigate redundant constraints?
Other investigations have the potential of casting light on
the effect of redundant constraints, but fail to do so by
not comparing the performance of constraint propagation
in the two cases: (1) definition only and (2) definition plus
redundant constraint.

An example is the work of Zhou [33] on job-shop schedul-
ing. Zhou was interested in two things: being the first
to solve certain well-known unsolved complex instances of
the job-shop scheduling problem and to investigate several
novel techniques for deriving redundant constraints. In ad-
dition to this investigation, it would have been interesting
to see the effect of any redundant constraint added to those
that are just enough to define the problem.

Zhou’s work is testimony to the power of redundant con-
straints: they allowed his program to be the world’s best

job-shop scheduling program, at least for a time. What is
needed in addition is controlled experimentation compar-
ing the performance of a program with the redundant con-
straint against the same program without. This is of course
not possible if the faster program is barely fast enough to
solve the problem in question, as in Zhou’s work. For such
comparisons one needs some unchallenging problems, as in
this paper.

In this paper we have investigated redundant constraints
in the time-honoured way of comparing performance be-
tween versions with or without the ingredient under in-
vestigation. In agriculture and medicine this method is
perfectly acceptable. It would be disappointing if a more
scientific way cannot be found: in a mathematically based
discipline, such as computing, one hopes for theory to help
answer such questions. At the moment such theory seems
to be lacking.

When can one expect a redundant constraint to
help? It would seem that choosing for a redundant con-
straint some random reformulations of the definition may
not help. We do not know whether this has been investi-
gated. It is not an attractive avenue of research. But it
would be embarrassing if it did work and is avoided be-
cause of lack of intellectual glamour.

Of the known successful examples, most are selected be-
cause of their mathematical significance. Taylor’s theorem
is an example in our work. Zhou [33] uses an important
combinatorics theorem of P. Hall on distinct representa-
tives. In the present paper a trivial redundant constraint
was also used (0 ≤

∫ 1

0
xnexdx ≤ 3). But this was not ran-

dom: it was chosen to counteract the observed ignorance
of this fact.

Do redundant constraints only prune search
spaces? In an optimization problem one not only has
to satisfy a constraint, but to minimize an objective func-
tion as well. In fact, Zhou’s work is of this form. There
redundant constraints have the clear function of pruning
the search space. In our second example, the Taylor con-
straints indeed pruned the search space considerably, as
shown in Figure 7. In the first example, however, there is
no search space. It seems that redundant constraints are
about more than just pruning search spaces.

11 Acknowledgements

To Bill Older I am indebted more than the references to
his work can suggest. He supported me with many discus-
sions and explanations and provided me with numerous un-
published notes. Paul Wormer and Frank Roberts helped
with the example of the unstable recursion. Terrance Swift



11

helped with literature references. Jacques Cohen, Jim Lee,
and two anonymous referees pointed out errors and made
many suggestions for improvement of the text. Finally,
the Natural Science and Engineering Research Council of
Canada generously provided research facilities.

References

[1] Götz Alefeld and Jürgen Herzberger. Introduction to
Interval Computations. Academic Press, 1983.

[2] N. Beldiceanu and E. Contejean. Introducing global
constraints in CHIP. Mathematical and Computer
Modelling, 20:97–123, 1994.

[3] F. Benhamou, D. McAllester, and P. Van Henten-
ryck. CLP(Intervals) revisited. In Logic Programming:
Proc. 1994 International Symposium, pages 124–138,
1994.

[4] Frédéric Benhamou, Pascal Bouvier, Alain Colmer-
auer, Henri Garetta, Bruno Giletta, Jean-Luc Mas-
sat, Guy Alain Narboni, Stéphane N’Dong, Robert
Pasero, Jean-François Pique, Touräıvane, Michel Van
Caneghem, and Eric Vétillard. Le manuel de Prolog
IV. Technical report, PrologIA, Parc Technologique
de Luminy, Marseille, France, 1996.

[5] Frédéric Benhamou and William J. Older. Apply-
ing interval arithmetic to real, integer, and Boolean
constraints. Journal of Logic Programming, 32:1–24,
1997.

[6] BNR. BNR Prolog user guide and reference manual.
1988.

[7] R. Bol and L. Degerstedt. Tabulated resolution for
well-founded semantics. In Proc. of the Symposium
on Logic Programming, 1993.

[8] W. Chen and D. S. Warren. Tabled Evaluation with
Delaying for General Logic Programs. Journal of the
ACM, 43(1):20–74, January 1996.

[9] B.M.W. Cheng, J.H.M. Lee, and J.C.K. Wu. Speeding
up constraint propagation by redundant modelling.
In Lecture Notes in Computer Science, volume 1118,
pages 91–103. Springer-Verlag, 1996.

[10] J.G. Cleary. Logical arithmetic. Future Computing
Systems, 2:125–149, 1987.

[11] Albert Sprague Coolidge. A quantum mechanics
treatment of the water molecule. Physical Review,
42:189–209, 1932.

[12] Eldon Hansen. Global Optimization Using Interval
Analysis. Marcel Dekker, 1992.

[13] Pascal Van Hentenryck. Constraint Satisfaction in
Logic Programming. MIT Press, 1989.

[14] Pascal Van Hentenryck, Laurent Michel, and Yves
Deville. Numerica: A Modeling Language for Global
Optimization. MIT Press, 1997.

[15] Einar Hille. Analysis, volume I. Blaisdell, 1964.

[16] A.K. Mackworth. Consistency in networks of rela-
tions. Artificial Intelligence, 8:99–118, 1977.

[17] D. Michie. Memo functions and machine learning.
Nature, 218:19–22, 1968.

[18] Ugo Montanari. Networks of constraints: Fundamen-
tal properties and applications to picture processing.
Information Science, 7(2):95–132, 1974.

[19] Ugo Montanari and Francesca Rossi. Constraint
relaxation may be perfect. Artificial Intelligence,
48:143–170, 1991.

[20] Ramon E. Moore. Interval Analysis. Prentice-Hall,
1966.

[21] Arnold Neumaier. Interval Methods for Systems of
Equations. Cambridge University Press, 1990.

[22] William Older. Constraints in BNR Prolog. 1992.

[23] William J. Older. Using interval arithmetic for non-
linear constrained optimization. Bell-Northern Re-
search Technical Report, March 3, 1993.

[24] W.J. Older. The application of relation arithmetic to
X-ray diffraction crystallography. Bell-Northern Re-
search Technical Report, February 7, 1989.

[25] W.J. Older, G.M. Swinkels, and M.H. van Emden.
Getting to the real problem: Experience with BNR
Prolog in OR. In Leon Sterling, editor, Proceedings
of the Third International Conference on the Practi-
cal Application of Prolog, pages 465–478. Alinmead
Software Ltd, 1995.

[26] William H. Press, Saul A. Teukolsky, William T. Vet-
terling, and Brian P. Flannery. Numerical Recipes in
C, Second Edition. Cambridge University Press, 1992.

[27] K. Sagonas, T. Swift, and D.S. Warren. XSB as an
efficient deductive database engine. In Proc. of SIG-
MOD 1994 Conference. ACM, 1994.



12

[28] Alexander L. Semenov. Solving optimization prob-
lems with help of the Unicalc solver. In R. Baker Kear-
fott and Vladik Kreinovich, editors, Application of
Interval Computations, pages 211–224. Kluwer Aca-
demic Publishers, 1996.

[29] H. Tamaki and T. Sato. OLDT resolution with tab-
ulation. In Third International Conference on Logic
Programming, pages 84–98, 1986.

[30] M.H. van Emden. Finding nonzeroes of nonlinear
functions. In preparation.

[31] M.H. van Emden. Value constraints in the CLP
Scheme. Constraints, 2:163–183, 1997.

[32] D. Waltz. Understanding line drawings in scenes with
shadows. In Patrick Henry Winston, editor, The Psy-
chology of Computer Vision, pages 19–91. McGraw-
Hill, 1975.

[33] Jianyang Zhou. Calcul de plus petits produits
cartésiens d’intervalles. PhD thesis, Laboratoire
d’Informatique de Marseille, 1997.


