QUANTITATIVE DEDUCTION AND ITS
FIXPOINT THEORY

M. H. van Emden

Abstract

Logic programming provides a model for rule-based reasoning in expert
systems. The advantage of this formal model is that it makes available many
results from the semantics and proof theory of first-order predicate logic.
A disadvantage is that in expert systems one often wants to use, instead of
the usual two truth values, an entire continuum of “uncertainties” in between.
That is, instead of the usual “qualitative” deduction, a form of “quantitative”
deduction is required. We present an approach to generalizing the Tarskian
semantics of Horn clause rules to justify a form of quantitative deduction.
Each clause receives a numerical attenuation factor. Herbrand interpreta-
tions, which are subsets of the Herbrand base, are generalized to subsets
which are fuzzy in the sense of Zadeh. We show that as result the fixpoint
method in the semantics of Horn clause rules can be developed in much the
same way for the quantitative case. As for proof theory, the interesting phe-
nomenon is that a proof should be viewed as a two-person game. The value of
the game turns out to be the truth value of the atomic formula to be proved,
evaluated in the minimal fixpoint of the rule set. The analog of the PROLOG
interpreter for quantitative deduction becomes a search of the game tree (=
proof tree) using the alpha-beta heuristic well known in game theory.

1 INTRODUCTION

Developers of expert systems have found the usual logical reasoning in terms of the
truth values true and false insufficient for their purpose. They have implemented
several quantitative alternatives, where these truth values are replaced by probabil-
ities or other measures of uncertainty. Of the different alternatives none has been
sufficiently convincing to replace the others, nor has it become clear which method
is preferable in a given situation.

This state of affairs is perhaps unavoidable, at least temporarily. It is a conse-
quence of working backward from the application. We should complement this ap-
proach with another one working forward from a well-established, coherent method
of world description and reasoning to obtain a quantitative alternative to existing
methods. A difference with working backward from the application is that coher-
ence, rather than applicability, has priority. We should make it clear right from
the start that we know of no application of quantitative deduction. We investigate
a mathematically compelling, easily implementable generalization of a practically
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important system (namely the pure-PROLOG subset of logic programming) in the
expectation that an application will turn up, sooner or later.

We have chosen the Horn clause subset of first-order predicate logic as a well-
established, coherent method of world description and reasoning. It is well estab-
lished by having a semantics in the sense of Tarski. It is coherent by the existence
of correctness and completeness results for its proof procedures. The latter include
proof procedures that are understandable by humans in terms of problem reduction
and that are computer-implementable with sufficient speed. Sets of Horn clauses
used in this way are also known as “logic programs” and are written in the pure
subset of the PROLOG language. In this paper we will interchangeably use “rule
sets” and “logic programs” for sets of positive Horn clauses, both in their qualitative
and quantitative forms.

Having chosen our starting point, in what way will we now choose our extension?
We regard the truth value false as the real number 0, true as the real number 1. We
extend the concept of truth value to include all real numbers in between. There
are two concepts in Horn clause logic that we generalize from the qualitative to
the quantitative. The first is the implication in a rule, consisting of a condition
and a conclusion. The implication can be regarded as transferring truth from the
condition to the conclusion. We associate with each implication an attenuation
factor f, which can be thought of as contributing f X t to the truth value of the
conclusion if ¢ is the truth value of the condition. Of course, the precise definition
of the meaning of rules is determined by the mathematical definition, to be given
later on, of when a rule is true in a given interpretation.

The second concept to be generalized is that of the interpretation, an abstract
kind of possible world, in which a given rule set is true or false, according to a precise
definition. These interpretations are usually thought of as relational structures,
specifying which individuals stand in which relation. Each relation by itself is
readily thought of as equivalent to a set of tuples of individuals: namely the set
of exactly those tuples among which the relation holds. It is perhaps less familiar
to think of several relations among individuals as a set, but this has important
advantages. A set I of variable-free atomic formulas can be used to specify a
relational structure, and hence an interpretation. For example, we can consider,
for a given P, the set R of all tuples (¢1,...,%,) such that the formula P(¢y,...,t,)
is in I. Then R is one of the relations of I, when I is regarded as a relational
structure.

Now, in the usual relational structure, two individuals either stand in a given
relation, or they do not. It may be useful to allow other alternatives. We obtain
quantitative interpretations by regarding them as fuzzy subsets (in the sense of
Zadeh [10]) of the set of all variable-free atomic formulas. A result is that a rela-
tional structure can specify that a relation between individuals holds with a certain
strength, characterized by any natural number between 0 and 1. Strength 0 (1)
then can be taken to correspond to the absence (presence) of the relation in the
conventional sense.

Because quantitative interpretations can be operated on in much the same way
as the usual ones, we can transfer the existing results on the semantics of logic
programs into close analogs which hold for the quantitative version of the theory. In
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particular, the powerful method of fixpoints is used in a similar fashion. Sometimes
not only the theorems, but also the proofs can be adopted unchanged. At other
times interesting differences emerge, such as in the approximation theorem for least
fixpoints.

In proof theory we also find strong similarities and some interesting differences.
In the first place, we have to make it clear what it means to generalize proofs
to the quantitative case. We consider the simple situation where the question, of
which the answer is to be proved, is a single variable-free atomic formula A. Tt is
supplied with a truth value ¢ between 0 and 1, and we expect a proof to prove that
A has membership value at least equal to ¢ in the minimal model of the rule set.
As before, the qualitative case is a special case: there the supplied truth value is
implicitly 1; from the proof we conclude that A belongs (in the nonfuzzy sense) to
the minimal model.

Proofs using the usual Horn clauses are found by searching the and/or tree
associated with the set of clauses. The PROLOG interpreter performs this search
depth first, from left to right. It is well known that and/or trees can be regarded
as game trees for a suitably chosen game. This game is determined, of course, by
the rules generating the and/or tree. The values 0 and 1 correspond to false and
true in the and/or tree. In the game tree they correspond to loss and win for
one of the players, say, White. Usually, however, game trees are too large to be
evaluated to the end of the game. As a result heuristic game values have to be
used: these are real numbers that can be normalized to lie between 0 and 1, given
a degree of expectation that White can win from the associated position. There is
a well-known algorithm for searching game trees with heuristic game values; it is
called alpha-beta.

When we translate back from game trees with heuristic game values, we obtain
and/or trees with fuzzy truth values. This suggests that a version of alpha-beta
search is suitable for answering questions to quantitative rule sets. A quick check
will show that in the special case of rules with all factors equal to 1, the alpha-beta
search gives the same behavior as a PROLOG interpreter.

Now some remarks on related work. In a sense, [3] is most closely related: all
results in it find their quantitative counterparts in the present work. In another
sense, Shapiro’s [8] is most closely related, as it is the only existing paper giv-
ing a quantitative treatment of the semantics and proof theory of logic programs.
Shapiro gives a general method for computing uncertainties, of which ours [Defi-
nition 2.1'(c)] is a special case. Our decision to forgo Shapiro’s level of generality
is richly rewarded in terms of results. In fact, Shapiro’s only semantical result is
his quantitative version of the fact that the intersection of Herbrand models is a
model, for Horn clauses. Of course, this result in [8] is proved for a whole class of
quantitative schemes; ours only for one.

Finally, a word about the organization of this paper. In this investigation we
have been guided by a close analogy between the qualitative and the quantitative
case of rule-based reasoning. To make this analogy as clear as possible, we often first
remind the reader of existing definitions or results in the qualitative case and then
present the quantitative analogy. In such situations we use a numbering scheme to
reflect the analogy: if the qualitative item is numbered n.m, then the corresponding
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quantitative item is numbered n.m’. Independently of this parallel presentation,
numbers with a prime reference quantitative items.

2 SYNTAX AND SEMANTICS OF FINITE SETS OF RULES

Syntax is quickly disposed of. Qualitative rules have a conclusion and a condition.
We will write such a rule in the style

A« B &--&B,, n>0.

A quantitative rule also has a conclusion and a condition (with the same syntax as
in the qualitative case). In addition it has a factor, a real number f in the interval
(0,1]. This component is called thus because it will appear from the meaning of
a rule, defined later on, that the rule contributes to the conclusion a truth value
which is f times the truth value of the condition. We write the rule as

A<~(fBi& - &B,,  n20

The intention is to show the factor f “embedded” in the arrow.

Having disposed of syntax, we now turn our attention to semantics. In both the
qualitative and the quantitative case, the Herbrand base Bp of a set P of rules is
defined as the set of all variable-free atomic formulas that can be formed with the
symbols contained in P.

In the qualitative case, a Herbrand interpretation is defined as a mapping Bp —
{false, true}, where the range is the set of truth values. A Herbrand interpretation
is often regarded as a subset of Bp, namely of those atomic formulas mapping to
true. In the quantitative case the range is the interval [0, 1] of real numbers. Here
a Herbrand interpretation can still be regarded as a subset of Bp, provided we
consider the subset to be “fuzzy” in the sense of Zadeh [10]. By identifying 1
with true and 0 with false, we make qualitative interpretations a special case of
quantitative ones. The mapping Bp — [0, 1] can be thought of as the membership
function characterizing a “fuzzy” subset I of Bp.

All Herbrand interpretations, qualitative or quantitative, of a given set P of
rules can be specified by a function val taking as arguments a variable-free atomic
formula A, and an interpretation I and having as result val(A, I), the value of the
membership function for I at the argument A.

Now that we know what a Herbrand interpretation is, the first thing to straighten
out is when a rule set is true in a given interpretation I. For the qualitative case
we recall [3] the following

Definition 2.1.

(a) A rule set is true in I iff every one of its rules is true in 1.
(b) A rule is true in I iff every one of its variable-free instances is true in I.

(c) A variable-free instance A « By & -+ & B, is true in I iff A is true in
I or at least one of By, ..., B, is false in I. (This last “or” is the usual
nonexclusive one.)
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For the quantitative case we have the
Definition 2.1'.
(a) A rule set is true in I iff every one of its rules is true in I.
(b) A rule is true in I iff every one of its variable-free instances is true in I.
(c) A variable-free instance A 4@ B; & --- & B,, of a rule is true in I iff
val(A,I) > f x min {val(B;,I)|i € {1,...,n}}.
(We define min § = 1.)

It will be seen that parts (a) and (b) are the same as in the qualitative case.
Note that for rules with f = 1 and I such that val(A4,I) = 0 or val(4,I) =1 for
all A, (c) is also the same as in the qualitative case.

Definition 2.2,2.2'. A Herbrand interpretation I such that a rule set P is true in
I, is called a Herbrand model of P.

In this paper we use the turnstile symbol (usually meaning logical implication)
in a different way.

Definition 2.3. For all rule sets P and all A € Bp, P = {A <} iff the right-hand
side is true in every Herbrand model of P.

Let us now consider the quantitative version:

Definition 2.3'. For all rule sets P, all A € Bp, and all f € [0,1], P }= {A~(f )~}
iff the right-hand side is true in every Herbrand model of P.

In the quantitative case we have that

P | {A~(f)—} implies P |= {A~(f)}—} for any f' < f.

Thus we should be careful to make as strong as possible a statement by making
the f as large as possible. In the quantitative case one cannot fail to do so: it
corresponds to f = 1.

Let us denote by M (P) the set of Herbrand models of a rule set P. NM(P) is
also defined in the quantitative case if we adopt Zadeh’s rule [10] for intersections:

val(4,NS’) = inf{val(4,9): S € S},

where S’ is a family of Herbrand interpretations and inf is the greatest lower bound.
In the qualitative case we found [3] as characterization of the intersection of all
Herbrand models:

NM(P)={A: AcBp&P = {A <}}. (2.4)

Its quantitative analog is given in the following:
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Theorem 2.4'.

val(4,N\M(P)) = sup{e|P |- {4 (2 )1},

where sup is the least upper bound.

PROOF. If P is a rule set, I a model of P, A € Bp, and P |= {A@}, then
{A 4@} is true in I and, by (2.1'), val(4,I) > z. Therefore,

val(4,I) > sup{z|P = {A~{(z ) }}

for any model I € M(P), and

val(4,NM(P)) > sup{z|P | {A~(z )~ }}.

Strict inequality in the above relation is impossible, as we have P = A 4@,
where v = val(4,NM(P)), for all P and all A € Bp. O

A consequence of our definition is that the value of A in the minimal model of

(U@ 50,50~}

depends only on the minimum of ¢ and r. Quantitative deduction is not applicable
in situations where, for example, A should have a higher value for ¢ = 0.5 and r = 1
than for ¢ = 0.5 and r = 0.5.

The method followed in [1, 3, 5] is to associate with each rule set P a mapping
Tp from interpretations to interpretations and to show that fixpoints of T are
models of P. Then various mathematical results about T» can be used to discover
properties of models.

Here we follow the same method. First a reminder of the definition in the
qualitative case:

Definition 2.5.

Tp(I) = {A|A+ By & --- & B, is a variable-free
instance of a rule in P and B, €I,...,B, € I}.

For the quantitative case we use:
Definition 2.5'. For every A € Bp

val(A,Tp(I)) = sup{f x min{val(B;,I)|i € {1,...,n}}|
A 4@ B; & --- & B,, is a variable-free instance of a rule in P}.
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In the qualitative case the partial order of set inclusion among interpretations plays
an important role. For the quantitative case we adopt Zadeh’s definition [10] of
inclusion among fuzzy sets. For two interpretations I1y C Bp, I3 C Bp this gives

I, C I, iff val(4,I;) <val(4,I) for all A € Bp.
Just as in the qualitative case, we define
I1 :Iz iff I1 QIQ and Ingl.

It follows immediately from Definition 2.5 that T is a monotone function, for
any rule set P. That is, I; C I, implies Tp(I;) C Tp(I2). It is well known that
monotonicity implies that the least fixpoint Ifp(Tp) of Tp, namely

N{I:Tp(I)=1I}
exists and is equal to
I : Tp(D) C I,

and dually for greatest fixpoints (see for example [1], or [5]).

A useful connection between models and fixpoints is established by Theorem 2.6,
which was first stated and proved for the qualitative case in [3]. It makes just as
much sense, and is just as true, in the quantitative case.

Theorem 2.6,2.6'. For every rule set P and for every I C Bp, P is true in I iff
Tp(I)CI.

Proor. If: I D Tp(I) = val(A,I) > val(A,Tp(I)) for any A € Bp. Moreover,

val(A,Tp(I)) > f x min{val(B;,I)|i € {1,...,n}}

for any variable-free instance A<—@~Bl & --- & B, of a rule in P, by Definition
(2.5"). Hence

val(A,I) > f x min{val(B;,I)|i € {1,...,n}},

and this implies that P is true in I by Definition 2.1'.
Only if: Let a rule set P and A € Bp be given. P true in I implies that for all

variable-free instances A 4@ B & --- & B,, of a rule in P we have
val(A,I) > f x min{val(B;,I)|i € {1,...,n}}.
Hence
val(A,I) > sup{f x min{val(B;,I)|i € {1,...,n}}|
A 4@ B; & --- & B,, is a variable-free instance of a rule in P},
and val(A4, I) > val(A, Tp(I)) by Definition 2.5'. O
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Theorem 2.6 enables us to study fixpoints of Tp to discover properties of Her-
brand models. It implies, for example, that NM (P) = lifp(Tp), the least fixpoint of
Tp. It follows that NM(P) is itself a Herbrand model, because the monotonicity
of Tp implies that lfp(Tp) = N{I : Tp(I) = I} is itself a fixpoint of Tp.

Another important property is that

1fp(Tp) = U{TE(D)|n € N}, (2.7,2.7)

where N is the set of natural numbers. Again, this both makes sense and is true
in the qualitative as well as in the quantitative case if, in the latter, we interpret
() to mean the interpretation such that val(4,0) = 0 for all A € Bp. It is easy to
prove (2.7) and (2.7') from the continuity of Tp.

Theorem 2.8,2.8'. Tp is continuous, i.e.,
U{Tp(I;)lj € N} = Tp (U{I;|j € N})
for all sequences I C Iy C --- of Herbrand interpretations.

PrOOF. We prove the theorem for the quantitative case. Let A be an atomic
formula: A € Bp. Let UI be U{I;|j € N}. According to the definition 2.5' of Tp,

val(A, T(UI)) = sup{f X min{val(Bg,UI)|k € {1,...,n}}|
A <—@— B; & --- & B,, is a variable-free instance of a rule in P}.

Let us use o to enumerate the variable-free instances of rules in P having A as
conclusion. Thus

A<(f)Bar& ** & Ban,

is the ath such variable-free instance. Then we can shorten the above expression
to

val(A, T(UI)) = sup, (fo X mingval(Byg,UI)).

Using val(Bag,UI) = sup;(val(Bag,I;)), where j indexes the monotone sequence
I; C I, C--- of Herbrand interpretations, we have

val(A,T(UI)) = sup,sup,fo X ming(val(Bak,I;))
= SUP,SUDP,Vaj,

where vo; = fo X ming(val(Bag, I;)).
Using the same notation we find

val(4,U{T(I;)|j € N}) = sup;sup,Va;-
It remains to show that

SUP,SUP jVq;j = SUP;SUP,Vaj-
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The set of all v,; is bounded above and therefore has a least upper bound, say, v.
Of course, sup,sup;vq; is an upper bound for the set of all v,;. Hence,

SUP,SUP;Vqj > V.

On the other hand, we have sup,v,; < v for all a. Hence sup,sup;vs; < v. Thus
we have found that sup,sup;v,; = v. Similarly one shows that sup;sup,va.; = v,
which completes the proof of the continuity of 7. [

An important task of this section on semantics is to establish a theorem that
can serve as foundation for the completeness result in the next section on proof
theory. A completeness result for a proof method is of the form: if an assertion is
true, then it can be proved according to the method. In the qualitative case we
consider an assertion of the form A <, with A € Bp, and we assume that it is true
in all Herbrand models of the set P of rules. That is, we assume that A € NM(P).
We know that

NM(P) = Ifp(Tp) = U{TE(0)|n € N}.

From the assumption that A is in the infinite union of the increasing sequence of
sets 0 C Tp(0) C T2(0) C --- it follows immediately that there exists an N € N
such that A € TIZ,V (#). T can be regarded as an operator adding one-step modus
ponens consequences to its argument set. Hence, without going into any details of
proof theory, it should be plausible that from the fact that A is in a finite power
of T applied to @, one can show that a finite proof of A exists according to a given
proof method, not necessarily modus ponens.

In the quantitative case we follow roughly the same path. Instead of assuming
A € NM(P), we now assume val(4,NM(P)) = o and we ultimately want to show

that A 4@ can be derived from P. Theorem 2.8 helps us prove that in the
quantitative case also NM(P) = U{TR(0)|n € N}. But we would also like to
draw the stronger conclusion from val(4, M (P)) = a that there exists an N € N
such that val(4, T} (0)) = a. However, this seems to take more work than in the
qualitative case. Here is one way of doing it.

Lemma 2.10'. For any finite set of P of rules, any A € Bp, and any real € > 0
{val(A,Tg(0))|n € N and val(A, Tg(0)) > €}
is finite.

PROOF. Let F be the set of factors of rules in P. Note that F' is finite by our
assumption about P. Let m be the greatest element of F' such that m < 1. The
real number val(A4,T%(0)) is a product of a sequence of elements of F. In this
sequence, at most g elements can be less than 1, if g is the smallest integer such
that m? < e. Because 1 can occur in the sequence any number of times, the
sequence can have any length. Thus the number of different products > € of the
sequences of elements of F' is not greater than |F|?. O

For the qualitative case, we have the following
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Theorem 2.11. For all sets P of rules, and all A € Bp, A € NM(P) implies that
there ezists an N € N such that A € TH (0).

Proor. NM(P) = lfp(Tp) = U{TR(0)|n € N}. For A to be in this infinite union
it is necessary that A € TR(0) for an n € N. O

Its quantitative analog is:

Theorem 2.11'. For all finite sets P of rules, and all A € Bp, there exists an
N € N such that val(A,NM(P)) = val(A, TY (0)).

ProoF. If v = val(A,NM (P)) is zero, then the N obviously exists: N = 0 will do.
Suppose now that v > 0. Then

NM(P) = Up(Tp) (by Theorem 2.6")
U{Tp(0)|n € N} (by Theorem 2.8').

Hence,

val(A,NM(P)) = sup{val(4,T5(0))|n € N}
sup{val(A, TE(0))|n € N and val(A, TE(0)) > €}

for any € smaller than v. If we choose such an ¢ positive, which we can do by our
assumption about v, then the latter set is finite by Lemma 2.10’. Hence the least
upper bound is attained for an N € N. [

The following example shows that the condition of P being finite is not super-
fluous. Let

P = {p(e) (1) q(@),p() (1) p(s(x))}
U{g(n)+(d)—|d=1-2"and n € N}.
Consider

val(p(s'(0)), T"(9)) = max{val(q(s*(0)), T"*(0))(= 1 — 27%),
val(p(s**1(0)), T"(0))}

For n > 3, the contribution front the second rule is greater for all . Hence
val(p(s*(0), T"(0)) =1 —2>""""  fori>0,n>0,i+n > 3.

When we keep i fixed and let n increase, this quantity does not attain its least
upper bound.
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3 PROOF THEORY FOR QUANTITATIVE RULES

Suppose we have the following rules:

AC&D’ D@a
B0, E~{0.5-,
F~(0.9-E.

Suppose we want to prove that the truth value of A in the least model is at least
0.2. The first rule tells us to try and prove the same for B & F' with truth value at
least 0.4, and hence that we must both prove B and F' with truth value at least 0.4.
We see that the best we can do for B is 0.2. We therefore do not even try to prove
F', and conclude that the first rule for A gets us nowhere. The second rule then
allows us to prove that the truth value of A in the least model is at least 0.225.

In this section we need to describe precisely the proof procedure of which the
above is an example, and we justify its result using the semantics of quantitative
rule-based reasoning as presented in the previous section.

As in the qualitative case, the proof procedure in quantitative deduction is a
search of an and/or tree. This tree, determined by a set P of rules and an initial
atom G is defined as follows.

There are two kinds of nodes: and-nodes and or-nodes.

Each or-node is labeled by a single atomic formula.

Each and-node is labeled by a rule from P and by a substitution.
The descendants of every or-node are all and-nodes, and vice versa.
The root is an or-node labeled by G.

For every rule R in P with a left-hand side unifying with the atomic formula A
(with most general unifier §) in an or-node, there is an and-node descendant
of the or-node labeled with R and 6. An or-node with no descendants is called
a failure node.

For every atomic formula B in the right-hand side of the rule labeling an and-
node, there is a descendant or-node labeled with B. An and-node with no
descendants is called a success node.

With each node of the and/or tree of a set P of rules we associate a real number.
We call it the value of that node. The value of a success node is the factor of its
associated rule. The value of a nonterminal and-node is f X m, where m is the
minimum of the values of its descendants and f is the factor of the rule labeling
the and-node. The value of a failure node is 0. The value of a nonterminal or-node
is the maximum of the values of its descendants.
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A proof tree is a subtree of an and/or tree defined as follows. The root of the
proof tree is the root of the and/or tree. An or-node of the proof tree which also
occurs in the and/or tree has one descendant in the proof tree which is one of
the descendants of that node in the and/or tree. An and-node in the proof tree
which also occurs in the and/or tree has as descendants in the proof tree all of the
descendants of that node in the and/or tree. Furthermore, all terminal nodes in a
proof tree are success nodes. We assign values to proof-tree nodes in the same way
as we do to nodes in an and/or tree.

In the qualitative case, correctness of the (SLD-resolution) proof procedure says
in its most elementary form: if A € Bp is proved, then A € NM(P). We could
express correctness like this: results of the proof procedure are not more true than
they are in the minimal model NM(P). Formulated in this way, it immediately
suggests the form of a corresponding correctness property in the quantitative case
limited to finite and/or trees:

Theorem 3.1'. For every set P of rules with a finite and/or tree and every A €
Bp, the value of the root in the and/or tree with A as root is not greater than
val(4,NM(P)).

PROOF. Observe first that the value of the root in the and/or tree is the maximum
of the values of the roots of its constituent proof trees. It can easily be verified that
the value of the root of a proof tree with A as root is not greater than Tp™"(0),
where n is the length of a longest path from the root to a terminal node. Here one
unit of path length is from or-node to or-node along the path. [J

The above theorem says that the result of an and/or tree is not too true, and
this we argued to be analogous to correctness in the qualitative case. Similarly,
completeness is the property of being true enough.

Theorem 3.2'. For every set P of rules with a finite and/or tree and every A € Bp,
the value v of the oot in the and/or tree with A as root is at least val(A, NM(P)).

PROOF. We prove by induction on n that v > val(4,T™(0)) for all n € N. When
we have shown that, we can conclude that

v > sup{val(4,T"(0))|n € N}
= val(4,U{T"(0)|n € N}) = val(4,NM(P)).

To start the inductive proof of v > val(4,T™(0)), observe that it is true for
n = 0. To prove the induction step, suppose that it holds for a certain value ng of
n. Then

val(A, T 1(})) = sup{f x min{val(Bg,T™ (0))|k € N}|
A 4—@ B; & --- & B,, is a variable-free instance of a rule in P}.

By Lemma 2.9’, the set over which the supremum is taken is finite. Therefore the
supremum must be attained for a variable-free instance, say,

A<(f)-Bi& - & B,
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of a rule in P, say, R = A’ 4@31 & --- & B),. Thus we have
val(4, T™ (D)) = f x min{val(By, T™ (0))|k € N}. (3.3)

Let us now consider the and/or tree for P having A as root. One of the descendants
of the root must be the rule R. Because its left-hand side A’ has A as variable-free
instance, there is a most general unifier  of A and A’. Hence one of the descendants
of the root is the node (R, #) labeled with R and 6. Its descendants are B, ..., B0
with values v1, ..., v}, and having By, ..., By respectively as variable-free instances.

By the induction hypothesis, By, ..., By are roots of and/or trees having values
v1,...,v such that v; > val(B;,T™(0)),s = 1,...,k. Because B.f has B; as
instance, we must have v > v;. For the value v of the entire and/or tree, with A
as root, we have v = f x min{v}| = 1,...,k} and hence

v > f x min{val(B;, T™(0))|: = 1,...,k}.

By (3.3') we conclude that v > val(A, 7™ *1((})), which completes the induction
step of the proof. [

4 GAME-THEORETIC ASPECTS OF RULE-BASED REASONING

Finally, after the fixpoint theory and the proof theory of quantitative deduction,
we consider its game-theoretic aspects. We first review the main concepts of two-
person games, because these have close parallels to rule-based reasoning (see, for
example, [6, 7]), both qualitative and quantitative. These parallels suggest an
algorithm for a quantitative version of a PROLOG interpreter.

There are two players, White and Black, and there is a state (for example the
disposition of pieces on a board; or of matches over heaps, as in Nim). Starting
from the initial state, players take turns making a move, that is, changing the state
according to the rules of the game. If no move exists for the player whose turn it
is to move, then that player has lost, the other has won, and the game is over.

Optimal ways of playing a game can in theory be analyzed by means of the
game tree. The nodes of a game tree are states, together with an indication of
which player’s turn it is to move. The root node is the initial state, with White to
move. The descendants in the game tree of a White-to-move node n are all states
resulting from the moves by White starting in n. These descendants then have the
indication that it is Black to move.

Let us consider the game of Nim as an example. The state consists of a set of
heaps of matches. A move consists of selecting a nonempty heap and removing at
least one match from it. The game tree in Figure 1 has as root a state in which
there are two heaps of matches, one with 2, one with 1 match. If a node is a white
circle, then it is White’s turn to move.

How does a game tree, in principle at least, allow one to determine an optimal
move? In the terminal nodes the rules determine which player has won. If it is
White, then attach a 1 as value to the node, otherwise a 0. A nonterminal node
of which all descendants have a value obtains the maximum of the values of its
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Figure 1: A game tree for the game of Nim. The sizes of the heaps are in parentheses.
The color of the node indicates whose turn it is to move (White or Black). The single
numbers indicate the value of the game at the node. The dotted outline indicates the
forcing tree.

descendants if it is a White-to-move node; otherwise the minimum. In this way the
root in Figure 1 obtains 1 as value, indicating that White can win against any play
by Black (we say that it is a forced win for White). It can also be seen that there
is just one initial move allowing White to win against any play by Black.

How would White remember that sequence of moves to make in order to realize
a forced win? Of course, it can consult the game tree. But not all of it is needed.
Of White’s moves, all except one optimal move can be discarded, because White
can choose its move. All of Black’s countermoves have to be kept, because White
has no control over Black’s choice of move. What remains of the game tree is called
the forcing tree. See Figure 1 for an example.

To discover a forcing tree one need not always traverse the entire game tree.
Consider in Figure 1, for example, the node P. After noting that the move to P
by Black causes White to lose, we need not traverse any sibling subtrees of P: we
already know that the value of @ is 0 without visiting other descendants of @ (this
is a so-called beta cutoff). Similar considerations, with the roles of White and Black
reversed, allow us to skip other parts of the game tree. For example, one never has
to look beyond the first forcing tree encountered (this is a so-called alpha cutoff).
In Figure 1 this eliminates the rightmost subtree of the root. The process indicated
here is called alpha-beta pruning.

If the game tree is too large to traverse completely, then it may be possible
to obtain approximate game values. Thus, let us consider a subtree of the game
tree by removing all descendants of certain nodes. Then, in a terminal node in the
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W(L,2)

W(1,2) W(0,0)&W(0,1) W(1,2)
W(1,2)* W(0,1)&W(1,0)

W(0,0)

W00 W01 W01 W(L0) W(0,0)

Figure 2: And/or tree corresponding to the upper part of the game tree in Figure 1.

subtree, the game may not have ended. Such a node receives as value a number
between 0 and 1, indicating the degree of expectation that its exact value is 1. In
this way all terminal nodes receive values between 0 and 1 and all other nodes can
be evaluated according to the max-min rule given above.

To introduce the game-theoretic aspects of rule-based reasoning we first give
an example of rules giving an and/or tree as close as possible to the game tree in
Figure 1. Let W(z,y) mean that White can win starting in a state of two heaps,
with £ matches on the one heap and y matches on the other heap. The rules of
Nim then state that

W(1,2)~(1 )~ W(0,0) & W(0,1),
w(1,2) «(1)-W(0,1) & W(1,0),
2

W(1,2) (1)~ W(0,0).

The and/or tree for these rules and the root W(1,2) is shown in Figure 2. We have
omitted rules saying that White can win from (0,1) and from (1,0). It may not be
possible to do this in a way yielding an and/or tree isomorphic to the game tree in
Figure 1.

It is not necessary for game trees to be exactly translatable to and/or trees for
our purpose. What matters is that:

Or-nodes correspond to White-to-move nodes, and-nodes to Black-to-move nodes.

If all factors are 1 in quantitative rules with nonempty right-hand sides, then
the values of nodes in an and/or tree are formed according to the same rules
as in a game tree with heuristic approximations to true game values.

The proof tree in an and/or tree is the analog of the forcing tree in the game
tree.

When searching for a proof tree, in an and/or tree alpha-beta pruning is appli-
cable in the same way as when searching for a forcing tree in a game tree. In
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the and/or tree an obvious modification takes care of the case when there are
factors different from 1.

The last point is for us the main justification of comparing rule-based reasoning to
two-person games: the well-known algorithm for alpha-beta pruning (see Winston
[9] for a Lisp version, van Emden and Clark [4] for a logic program) can be used
to interpret quantitative rules in principle with the same efficiency as a PROLOG
machine interprets qualitative rules. The only change required is to multiply the
truth value by a suitable factor.

If an and/or tree is like a game tree, then what is the game behind the and/or
tree? This must be a game with or-nodes as states in which White moves, and with
and-nodes as states in which Black moves. White’s move consists of selecting a rule
matching the or-node in which it is to move. Black’s move consists of selecting an
atom from the condition in the rule labeling the and-node in which it is to move.
In the qualitative case, White wins when Black is to move in a state having a rule
with no condition. Black wins when White is to move in a state having an atom
matching no rule. Note that neither a win by White nor a win by Black in itself
implies the existence or otherwise of a proof. But if, in this game, White can win
against any play by Black, then and only then a proof exists. This is implied by
the correspondence, noted above, between proof trees and forcing trees.

5 CONCLUDING REMARKS

Rule sets in expert systems are typically not recursive. Yet, conceptually at least,
our restriction to finite and/or trees is disappointing. We would like to have as few
differences as possible between expert systems and logic programs, where infinite
and/or trees are common.

We have required our and/or trees to be finite because, in general, the min-max
algorithm only works for finite trees. There are at least two exceptions. The first
is the special case where truth values are only 0 and 1, that is, the qualitative
case. If, in this case, an infinite and/or tree is scanned from left to right and there
is a success node to the left of the leftmost infinite branch, then this branch is
cut off by alpha-beta pruning. As a result, the value of the root is determined
by a terminating algorithm. This describes the behavior of a PROLOG interpreter
instructed to find one solution only.

Let us now consider another special case where we can handle infinite and/or
trees. This is the case where all factors of rules are less than 1. Here it is important
that the search algorithm for and/or trees is not quite the same as alpha-beta search
of game trees. There is one difference, conceptually trivial and easy to implement,
which has interesting consequences. This is that in a game tree, black-to-move
nodes receive as game value the minimum of the values of their descendants. The
corresponding and-nodes receive as value the minimum multiplied by the factor
of the rule associated with the and-node. When searching the tree from the top
down, each or-node has associated with it a certain threshold. The subtree below
this node has to deliver a value at least as large as this threshold to be worth
exploring. The threshold of the next or-node down the tree will be t/f, where f is
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the factor of the intervening rule. Thus, if all factors are less than 1 and if there are
only finitely many rules, then infinite branches, the bane of PROLOG execution, are
avoided: as one goes down the tree, thresholds must ultimately increase beyond 1,
at which point the branch can be safely abandoned.

What is the role of “negation by failure” in quantitative deduction? Proof-
theoretically, the phenomenon certainly occurs: if the initial goal is a variable-free
atomic formula A with threshold greater than val(A,NM(P)) and if the and/or
tree is favorable (by being finite or because the rules have suitable factors), then
search will terminate without a proof tree being found.

Negation by failure usually means a semantical characterization of this phe-
nomenon. K. L. Clark [2] has shown for logic programs that the negation of a
goal giving rise to finite failure is a logical implication of a strengthened version
of the logic program. Note that logical implication means truth in all models, not
just Herbrand models. In our treatment we only consider Herbrand models. This
restriction seems to be essential: our models have to be sets so that we can make
the transition to the quantitative case by changing these sets to be fuzzy. As we
have warned our readers, the turnstile symbol (=) is used in a nonstandard way:
it means truth in all Herbrand models rather than in all models. Because of our re-
striction to Herbrand models we cannot contemplate a semantical characterisation
of negation by failure in the sense of Clark.

Other characterizations of negation by failure are possible. For example, [1]
proves that atoms giving rise to finite failed and/or trees are contained in the
complement of the greatest fixpoint of the mapping Tp associated with the rule
set P. (Lloyd [5] is a convenient source for this result as well as for negation by
failure.) It is plausible that a similar result can be proved for the quantitative case.

We thank Lockwood Morris and David Rosenblueth for their valuable remarks on prelim-
inary versions of this paper. Funding of various research facilities by the National Science
and Engineering Research Council of Canada is gratefully acknowledged.
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