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Abstract

We investigate unconstrained optimization with an objective function that has an unknown and
possibly large number of local minima. By varying the selection and termination criteria, we
obtain several variants of the Moore-Skelboe algorithm for distinct tasks in nonconvex global
optimization. All of these terminate after having found the best answer that is possible, given
the precision of the underlying hardware and given the expression for the objective function.
The first algorithm finds the best lower bound for the global minimum. This is then extended to
a version that adds an upper bound.

Often not only the global minimum is required, but also possibly existing points that achieve
near-optimality, yet are far from the points at which the global minimum occurs. In response to
this requirement we define the Æ-minimizer, the set of points at which the objective function is
within Æ of the global minimum.

We then present algorithms that return a set of boxes. In one of these, the union of the boxes
in this set contains a Æ-minimizer. If this union is small, then we know that there is a well-
defined global minimum. In the other version, the union of the boxes returned is contained in a
Æ-minimizer. If this union is large, then we know that there is a wide choice of parameters that
yield near-optimal objective function values.

Keywords: nonconvex unconstrained global optimization, Moore-Skelboe algorithm, mini-
mizer, sensitivity analysis
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1 Introduction

There are many features that contribute to the degree of difficulty of an optimization problem. As
the wide applicability and the great flexibility of the optimization paradigm make it tempting to
formulate models with ever increasing numbers of variables, all non-statistical global optimization
methods are severely limited in the number of variables they can handle. This is an acutely felt
limitation.

With the number of variables given, an important determinant of degree of difficulty is whether
the objective function has a single local minimum. In addition to this favorable property, it is
a powerful help if the matrix of second derivatives exists and is well-conditioned near the local
minimum. At the other extreme, the objective function may have an unknown and possibly large
number of local minima. It may be that neither second derivatives nor even first derivatives are
available. In this paper we consider optimization problems of this latter type. The only assumption
we make of the objective function is that it is bounded from below and that it can be computed by
an expression that can be evaluated in interval arithmetic.

This class of optimization problems is solved, in sufficiently small instances, by the Moore-
Skelboe algorithm [7, 8, 3, 11]. Many variants exist, mostly in the selection and termination criteria.
In the literature [7, 8, 1, 9], these variants are compared on heuristic grounds. We show that in this
respect one can move from the heuristic to the exact. Our first step in this direction is to clarify what
optimization problem is to be solved.

One possible goal is to determine what the global minimum is. We call this the fathoming
problem. Another possible goal is to determine where the global minimum occurs. We call this the
localization problem.

These distinct goals determine different termination criteria. Within the fathoming problem, we
first present an algorithm that finds the best lower bound for the global minimum. Next comes an
algorithm for finding the best interval for the global minimum. To address the localization problem,
we present an algorithm that yields a set of boxes containing the Æ-minimizer. Another localization
algorithm yields a set of boxes contained in a Æ-minimizer.

2 Preliminaries

Definition 1 An optimization setting consists of the following.
(1) An objective function � , which is a function of type �� ��.
(2) A domain �, which is a non-empty subset of ��.
(3) A set of conditions of the form ������ � � � � ��� � �, for � � ��� � � � ���. Here ��� � � � � � �� are
functions of type �� ��.

Logically, the domain (2) and the conditions (3) are mutually redundant. Yet it is convenient to have
both. The domain is typically simply defined, for example as a Cartesian product of intervals. The
conditions may not be trivial to solve. If � � � and � is a cartesian product of intervals, then we
speak of an unconstrained optimization problem.

Given an optimization setting, the following additional definitions suggest themselves.

Definition 2 (1) The feasible set, which is the intersection of the domain with the subset of �� that
satisfies the conditions.
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(2) The global minimum �, which is defined as the greatest lower bound of � restricted to a non-
empty feasible set.
(3) The Æ-minimizer, which is defined as the intersection of the feasible set with ����� � � � � ��� 	
����� � � � � ���
 � � Æ�, for some Æ � �. The minimizer without qualification is the 0-minimizer.

2.1 Intervals

We suppose a finite set of floating-point numbers, for example as specified in IEEE standard ���.
We consider the finite floating-point numbers as reals; therefore they can serve as bounds for closed
connected sets of reals. We consider as intervals pairs ��� 		 of finite floating-point numbers such
that � � 	. These denote the closed connected sets of reals bounded by � and 	. We extend this
notation to the infinite floating-point numbers by letting �
�� 		 and ���
�	 denote the obviously
suggested unbounded closed connected sets of reals.

We call � the left bound and 	 the right bound, writing � � lb���� 		� and 	 � rb���� 		�. The
width of ��� 		 is 
���� 		� � 	
 �.

An interval of the form ��� �	 is called a point interval. We denote the empty interval by 
. As
we consider the finite floating-point numbers as reals, the distinct bit patterns 
� and
� denote the
same real. Thus �
��
�	, �
��
�	, �
��
�	, and �
��
�	 are all equal and are equal to the point
interval ��� �	.

The fact that there are a finite number of floating-point numbers has important consequences.
There is a greatest finite floating-point number � . Adjacent floating-point number have a positive
distance between them. We have atomic intervals, which are defined as intervals ��� 		 with � � 	
or � � 	 and � and 	 adjacent floating-point numbers. Atomic intervals typically have small width.
However, �
��
� 	 and ����	, where � is the greatest finite floating point number, are also
atomic.

The split operation is defined on non-empty, non-atomic intervals ��� 		 and yields two intervals
����	 and ��� 		, where � is a floating-point number such that � � � � 	. Thus, the split
operation, if defined, results in narrower intervals.

Our algorithms typically continue splitting as long as possible. As a result, we can claim that
they result in the best that can be obtained, given the limitations of the underlying arithmetic.

2.2 The objective function

The Moore-Skelboe algorithm depends on lower bounds for the objective function. It obtains these
by interval arithmetic 1. As a result, it is essential that the objective function � be given by an
expression that can be evaluated in interval arithmetic. We assume that this expression is in terms
of rational operations in which the standard functions (exponential, logarithm, trigonometric) may
also occur.

This requirement rules out, for example, objective functions that are given as sets of observa-
tional data. For such data to become usable for the construction of an objective function, approxima-
tion or interpolation techniques can often be applied to obtain an objective function of the required
form.

1Lower bounds can also be obtained if one has a Lipschitz condition on � . This method is used by J. Pintér [10].
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Definition 3 We assume an expression 
 is given that contains variables ��� � � � � ��. 
 computes
� in the sense that ����� � � � � ��� has as value
 with ��� � � � � �� are substituted in
 for ��� � � � � ��.
We assume that 
 can be evaluated in interval arithmetic.

The same symbol � is used to denote the following three functions, which are distinguished by
the types of their arguments:
(1) The objective function of type �� ��.
(2) The function that maps intervals ��� � � � ��� to the result of evaluating in interval arithmetic 

with ��� � � � ��� substituted for ��� � � � � ��.
(3) The function that maps a box � � �� � � � � ��� to ����� � � � ����, as defined above.

3 Interval arithmetic for global optimization

The presence of an unknown and possibly large number of local minima may seem to preclude the
possibility of finding a lower bound for the global minimum. After all, even if one has identified
a thousand local minima, how does one know that there is not yet another one with an objective-
function value lower than any found so far? Moreover, it is possible that a spike-shaped global
minimum exists that fits entirely between two consecutive floating-point numbers.

The answer is that interval arithmetic has the property of producing intervals that contain all
possible values. More precisely, we have the following theorem.

Theorem 1 (The Fundamental Law of Interval Arithmetic).
Let � be a function of type �� �� and let ��� � � � ��� be intervals. We have

������ � � � � ��� 	 �� � ��� � � � � �� � ��� � ����� � � � �����

For the different meanings of the two occurrences of � , see Definition 3.

The fundamental theorem guarantees that the lower bound of the interval for � computed by interval
arithmetic is a lower bound for the global minimum in �� � � � � ���.

However, neither the fundamental theorem nor anything else ensures that this is useful: it may
be that the lower bound is far away from the global minimum. Usually, the narrower the intervals
in �� � � � � � ��, the closer the left bound of the interval ���� � � � � � ��� is to the greatest
lower bound of ������ � � � � ��� 	 �� � ��� � � � � �� � ���. This is far from guaranteed; it is only
typical. What we do know is that splitting does not make the interval for the global minimum worse.
This is because of the monotonicity of canonical set extensions of functions in general. In the case
of a function � � �� � � extended to an � that maps � intervals to an interval as defined in
Definition 3, monotonicity is defined as follows.

Definition 4 Let 
 be an expression that contains variables ��� � � � � ��, and let � be the interval
function associated with it. This function is said to be monotonic iff for all intervals ��� � � � ���

and ��� � � � � ��, such that �� � ��� � � � ��� � ��, we have ����� � � � ���� � ����� � � � � ���

This suggests subdividing �� � � � � � �� into smaller boxes and evaluating � over each one of
these. The result of subdividing is a set of boxes that covers the set in question.

Definition 5 Let � � � be an integer. If ���� � � � � ����� is a sequence of non-empty subsets of a
set �, then the sequence is called a cover in �. If, in addition, the union of ��� � � � � ���� is �, then
the sequence ���� � � � � ����� is a cover for �.
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let the cover be ����
while (
������� � �) �

// � � �����
remove �� from the cover
split �� and insert the results into the cover in non-decreasing order of
lb�������, for � � �� � � � � � 
 �

�
// � � ����� and 
������� � �
output �����

Figure 1: The algorithm MS�. It is intended to compute an interval for the global minimum with
width less than or equal to a positive �.

Assume that we have a cover ���� ��� � � � � ����� for � � �� � � � � � �� and that the cover
is ordered by non-decreasing lower bounds of �����, for � � ��� � � � � � 
 ��. Initially, we can
take �� � � and � � �. Such a cover contains the minimizer. We will consider algorithms that
change a given cover containing the minimizer to one that has a smaller union and still contains the
minimizer.

Theorem 2 Let us consider an unconstrained global optimization problem. Let ���� ��� � � � � �����
be a cover containing the global minimizer that is ordered according to nondecreasing order of the
left bounds of ����� for � � �� �� �� � � � � � 
�. Let � be the smallest among the right bounds of the
intervals ������� ������ � � � � ��������. The interval �lb�������� � 	 contains the global minimum
�.

Proof. Consider lb�������. None of the other boxes in the cover has a smaller left bound. As the
global minimum has to be achieved in at least one of the boxes (because the number of sets in the
cover is finite), the left bound of ����� is a lower bound for �. Let us now consider � . Suppose it
is the right bound of ����� with � � ��� � � � � � 
 ��. As �� is nonempty, ����� contains at least
one value � of � . We have � � rb������� � � � �. We conclude that �lb�������� � 	 contains the
global minimum �.

4 The Moore-Skelboe algorithm

The considerations in the previous section suggest the possibility of solving the fathoming and the
localization problem by constructing a suitable cover.

4.1 The fathoming problem for unconstrained global optimization

The original Moore-Skelboe algorithm can be regarded as addressing the fathoming problem. Es-
sentially, the algorithm is as shown in Figure 1. Here it is desired to find an interval for � of width
at most �, for some real � � �.

The algorithm in Figure 1 has some positive features. In the first place, it may find a sufficiently
narrow interval for �. Second, it does this by subdividing� in an adaptive way, as explained below.
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Let us consider the operation “split”. By its definition, the results are nonempty, are both proper
subsets, and have a union that is equal to the box that was split. The number of boxes in the cover
created by the algorithm typically becomes so large that the cover cannot be stored. So one should
be careful which box to split2. It is desirable to split a box most likely to contain the minimizer. The
heuristic chosen by the algorithm in Figure 1 is to split the box �� for which ����� has the lowest
lower bound. The subdivision resulting from the splits in this algorithm is adaptive: boxes far away
from the global minimum tend not to be split. This goes some way towards avoiding covers with
more sets than can be stored.

However, algorithm MS� needs improvement. For example, what happens if one chooses a too
small positive �? If the algorithm does not abort because the number of sets in the cover has become
too large to be stored, �� will become atomic3. In that case the effect of split in the algorithm in
Figure 1 is undefined.

To prevent this, we need to include a test whether the box�� of the cover is atomic, as is done in
Figure 2. The interval returned contains �. The width of the returned interval is either at most �, and
then we get what we asked for. If the returned interval is wider than �, then we know that it has the
best lower bound that is possible with the given arithmetic and expression for the objective function.
That is, if we ask too much of the algorithm in the form of an � that is too small, then we get as a
consolation prize a very valuable result. Hence we call it the “Consolation Prize Algorithm”. Its
distinctive feature is stated in theorem 3.

Theorem 3 The Consolation Prize algorithm in Figure 2 terminates and, in case of 
������� � �,
it returns the best lower bound.

The termination of the Consolation Prize Algorithm is based upon the fact that the number of
floating-point numbers is finite; hence the total number of the boxes that can be defined is finite.
Every split changes a non-atomic box into two strictly smaller boxes. A non-termination loop would
therefore generate an infinite sequence of different boxes. Termination of the algorithm follows. It
is possible that � � �	�������. ����� is therefore the only interval known to contain �. The only
way to improve �	������� as lower bound of � is to split ��. When �� is atomic, this lower bound
cannot be further improved.

However, when we ask too much of the algorithm in the form of an � that is too small, it would
also be reasonable to get the narrowest possible interval for �. This is not necessarily the case
with the algorithm in Figure 2: the box �� with the smallest left bound for ����� may not have
the smallest right bound. Thus we see that the algorithm in Figure 2, though ostensibly its purpose
is to find a � with 
������ � �, it does not try very hard. If it does not achieve its goal by
improving the lower bound, then it should continue with improving the upper bound. Hence we call
it the “interval-valued fathoming algorithm”. It is shown in Figure 3. Its distinctive feature is the
following.

Theorem 4 The Algorithm in Figure 3 terminates and, for sufficiently small �, outputs the best
interval for �.

2The box to be split is a Cartesian product of � intervals. So we not only get to choose which box to split, but often
also which projection to split.

3A box is atomic if all of its projections are atomic intervals.
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let the cover be ����
while (
������� � � and �atomic����) �

// � � �����
remove �� from the cover
split �� and insert the results into the cover in non-decreasing order of
lb�������, for � � �� � � � � � 
 �

�
// � � ����� and (
������� � � or atomic����)
output lb�������;

Figure 2: The algorithm MS� (“Consolation Prize Algorithm”). The function atomic specifies
whether its box argument is atomic.

let the cover be ����
while (
������� � � and �atomic����) �

// � � �����
remove �� from the cover
split �� and insert the results into the cover in non-decreasing order of
lb�������, for � � �� � � � � � 
 �

�
// � � ����� and (
������� � � or atomic����)
if (
������� � �) output �����; exit;

// atomic����
let � equal lb�������
order the cover by non-decreasing rb�������, for � � �� � � � � � 
 �
let � equal rb�������
while ((� 
 �� � � and �� such that �atomic����) �

// � � � � �
remove from the cover a non-atomic �� with lowest rb�������
split �� and insert the results of splitting into the cover
maintaining the cover’s order of non-decreasing lb�������,
for � � �� � � � � � 
 �
� � rb������� // update the upper bound of �
remove from the cover all boxes � such that lb������ � � // Ichida-Fujii

�
// �� 
 �� � � or all the boxes left in the cover are atomic
output ���� 	

Figure 3: The algorithm MS�(“interval-valued fathoming algorithm”). The line commented “Ichida-
Fujii” marks the application of branch-and-bound added to the Moore-Skelboe algorithm in [6].
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let the cover be ����
let � equal rb�������
while (�� in the cover such that �atomic����)�

// the union of the boxes in the cover is an outer approximation to the Æ-minimizer
choose a nonatomic �� with least upper bound rb�������
remove �� from the cover
split �� and insert the results into the cover in non-decreasing order of
lb�������, for � � �� � � � � � 
 �

update �
remove all boxes � from the cover with lb������ � �� 
 Æ�
�

�
// the union of the boxes in the cover is an outer approximation to the Æ-minimizer
output the boxes in the cover

Figure 4: The algorithm MS�. After termination, the best outer approximation to the Æ-minimizer is
the union of ���� � � � � ��� where � is the greatest � such that lb������� � �� 
 Æ�.

By choosing � sufficiently close to zero, one forces all boxes to become atomic or to be removed
from the cover. As a result, we get the best lower and upper bounds for � that are possible with the
given expression for � and the given precision of the arithmetic.

The main limitation of the algorithms of this type is the large number of sets in the cover.
Removing the sets of the cover whose lower bound exceeds � is an application of the branch-and-
bound principle. This was added to the Moore-Skelboe algorithm by Ichida and Fujii [6].

One way to speed up these algorithms is to use the value of the objective function somewhere
inside the boxes of the cover instead of its right bound. These are also upper bounds for the global
minimum and are less than the upper bound obtained by interval arithmetic.

The above applies in the case of unconstrained optimization. However, in the presence of con-
straints, one has to prove the existence of a feasible point inside the box � �.

4.2 The localization problem for unconstrained global optimization

The localization problem is to gain information about the Æ-minimizer. This can take two forms: an
outer approximation or an inner approximation. An outer approximation is a set of boxes whose
union contains the Æ-minimizer. This can always be achieved, though the union may be so large as
not to be useful. Algorithm MS� in Figure 4 makes this union as small as possible. The distinctive
property of this algorithm is the following.

Theorem 5 Algorithm MS� terminates and gives the best outer approximation to the Æ-minimizer.

Proof. Suppose � is in the Æ-minimizer. Then ���� � � 
 Æ and hence ���� � � 
 Æ. This
implies that there is a box in the cover containing � because only boxes � � with lb������� � � 
 Æ
have been removed from the cover.

Figure 5 illustrates the outer approximation of Æ-minimizer. Note that boxes are ordered using the
lower bound of � on each box. Let � be the upper bound of the box in the cover with least upper
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Lb(f(Bo))

f values

U

Delta

Discarded

Outer approximation
boxes

Figure 5: A terminal situation of the algorithm ��� for outer approximation of the Æ-minimizer.
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let the cover ����
while (�� such that �� 
 Æ� � ����� and �atomic����) �

// the union of the boxes � in the cover with rb������ � �� 
 Æ�
//is an inner approximation to the �� 
 lb������� 
 Æ�-minimizer.
remove �� from the cover
split �� and insert the results into the cover in non-decreasing order of
rb�������, for � � �� � � � � � 
 �
� � rb�������
remove all boxes from the cover with lower bound greater than � 
 Æ

�
// �� atomic���� or �� 
 Æ� �� �����
remove every box �� from the cover with �� 
 Æ� � �����
output all boxes in the cover

Figure 6: The algorithm MS�. After termination, the union of boxes with upper bounds below �
Æ
is the best inner approximation to the �� 
 lb������� 
 Æ�-minimizer.

bound. For an inner approximation, we let � � � 
 lb�������, which is the width of the best
interval for �. Let �� be a box such that � � rb�������. Such a �� will now be contained in the
��
 Æ�-minimizer for any positive Æ. In fact, all boxes of the cover that have upper bounds less than
� 
 Æ have a union that is contained in the �� 
 Æ�-minimizer. This inner approximation can be
improved (that is, made larger) by splitting certain boxes. This improvement is carried out by the
algorithm in Figure 6. Its distinctive characteristic is the following.

Theorem 6 Algorithm MS� terminates and gives the best inner approximation to the �� 
 Æ�-
minimizer.

Proof. Assume � � � for one of the boxes of the cover. Then ���� � ����, so that ���� �
rb������. For all boxes�� in the cover rb���� ��� � �
Æ. As� � �
�, we have ���� � �
Æ
�.
So it is in the ��
 Æ�-minimizer.

Figure 7 illustrates the inner approximation of ��
Æ�-minimizer. In the case of inner approximation,
note that boxes are ordered using the upper bound of � on each box.

5 Suggestions for further work

To be able to concentrate on the main principle, we have restricted ourselves to the framework of
interval arithmetic. This has the advantage of simplicity in exposition, but it is also more restricted
and less effective than the more advanced technique of interval constraints [4, 5]. With interval
constraints, the algorithms in this paper can be extended to constrained nonconvex global optimiza-
tion. Whether constrained or not, interval constraints allow a lower bound � to be obtained by
transforming the objective function to a constraint system and showing the inconsistency of adding
���� � �, as was first shown in [2]. Such lower bounds are stricter than the ones obtained by the
Moore-Skelboe algorithm with the same level of splitting.
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Figure 7: A terminal situation of the algorithm ��� for inner approximation of the �Æ 
 ��-
minimizer.
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The Moore-Skelboe algorithm does not address the “clustering problem”, explained below. As
we restrict ourselves to minimal elaborations of the Moore-Skelboe algorithm, our versions have
the same defect.

Algorithms of this type need to decide whether to include a box � in the list of boxes to be
returned. Often, the interval ���� is so wide that the decision cannot be taken. Accordingly, � is
split into subboxes for which the decision still cannot be taken. It may happen that after a number
splits all descendants of � are all included. In the algorithms discussed here, all descendants appear
separately in the output list. One can think of these as a cluster in the output list and call this
phenomenon the “clustering problem”.

In the situation described here it is unavoidable to decide the many descendants of � in order to
decide � itself. But the cluster problem is solved by maintaining the tree structure of the successive
splits so that � can be returned on the output list to replace the long list of its descendants. Such an
algorithm was described in [12]. The algorithms here need to be modified accordingly.

6 Conclusion

Ratschek and Rokne [11] state properties of the Moore-Skelboe algorithm in the limit for infinite
running time, infinite memory, and infinite precision of the floating-point number system. In this
paper we find properties that can be verified in actual executions of the Moore-Skelboe algorithm.

We isolate the global optimization problem in the strict sense of the fathoming problem. In
addition we consider the localization problem, for which we present an algorithm that yields a set
of boxes containing the Æ-minimizer. If their union is small, we know that there is a well-defined
global minimum. Another algorithm yields a set of boxes contained in a Æ-minimizer. If their union
is large, then we know that there are widely separated points with objective function values near the
global minimum. Obtaining these inner and outer approximations is one way of doing a sensitivity
analysis on the optimization problem.
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