Editorial

Rhetoric versus modernism in computing

Inventing a new logic and investigating its semantics or proof theory is a thriving
branch of theoretical computer science. Much work is also done on decidability and
complexity aspects. But little attention is paid to how these new logics are going to
be used. Of course one cannot expect such information in the existing publications,
as they are concerned with the preliminary, necessarily theoretical phase of research
into the new logic.

But the application for funding of the research cannot avoid this question. There the
usual justification is the formal, automatic correctness proof of safety-critical software.
It is taken for granted that no more needs to be said. Aren’t computer programs
notoriously error-prone? Isn’t it inevitable that we are going to trust our lives more
and more to automatic equipment controlled by computer programs? Isn’t it then
equally inevitable that such software is subjected to automatic proof of correctness
which will then eliminate the possibility of malfunction due to software error?

The answer to such questions is that it has been tried for a long time and, so far,
has failed to have any practical impact. Even though the first attempts started over
twenty years ago, the lack of success so far does not of course mean that automatic
program verification is impossible and undesirable. But past experience should be
examined. I doubt whether this has been done enough. In this editorial I would like
to contribute to such an examination.

In the late 1960s, when the difficulty of building large software systems correctly
and within budget became clear,! projects were funded that were devoted to formally
proving, by means of a computer, that a program meets its specification. I trust
that these projects were duly declared a success. But what counts is that so far,
over twenty years later, they have not had any impact on the way software is built.
This failure has attracted the attention of Richard De Millo, Richard Lipton, and the
late Alan Perlis [4], who described the use of an automated verification system in a
thought-experiment roughly as follows.

Imagine that such a proof system has been implemented. It is unrealistic
to assume that it is much shorter (if at all) than, say, ten thousand lines of
code. Moreover, it is limited to proving correctness of small programs (say,
a few hundred lines). You feed the prover such a small program, with its
specification, go out for lunch, and find on return an enormous amount of
unintelligible output. This may be a proof. You skip to the end, where it says:
QED. So now you know it is a proof.

The question arises: does this episode raise your confidence in the program
subjected to this treatment; does it help you to decide whether it is justified
to include it in a safety-critical application such as a controller of an aircraft
or of a cardiac pacemaker? To start with, the verification program itself is
not verified. Moreover, the specification is a dense piece of formalism, not
much shorter than the program it specifies and as much subject to error as the
program itself.

1The difficulty became known as the ‘Software Crisis’; see [6] for the first meeting devoted to this topic.

551



552 Editorial

This was approximately the thought experiment of De Millo, Lipton, and Perlis.
Since then increase in speed of computers has had the effect that the running of
such a program can be scheduled independently of lunch. And of course, it is the
aim of research into new logics to make the specification considerably shorter than
the program and to make it less subject to error. But the main question remains
unchanged: should the formal, automatically generated proof influence a responsible
professional’s decision to include the program in a safety-critical application? Such a
professional will need to understand the proof and will take into account that neither
the compiler nor the operating system under which the program is to run have been
verified.

This thought experiment could easily have been performed before any automatic
verification project was funded. Several were. None has had an impact on the way
software is built, so far at least. Indeed, after a quarter of a century, the Software
Crisis continues to rage unabated. If this is too strong a claim, it is not because
of advances in formal verification of programs, but because of the introduction of
code inspections in software development. In this approach, programmers are not
permitted to run their code. Instead, they are required to revise it until they are
confident of its correctness. Then it is subjected to an inspection, a formal meeting
with a few peers, in which a participant goes through the code, paraphrasing small
bits at a time, leading an attempt by all present to detect errors. This practice,
though still not widespread, has been shown [1, 7] to be effective in improving the
quality of software compared to the still prevalent approach where no inspections are
conducted, and where confidence is gained by failure to find faults during testing.

This is the contrast I want to consider here: on the one hand the approach via
verification, relying on formal methods, which turned out to be costly and fruitless.
On the other hand the approach via inspections, requiring no science, no new methods,
only common sense. The latter turns out to be effective. How is it possible that the
effective, easy, cheap and obvious was overlooked in favour of the difficult, expensive,
and possibly impotent? This can only be explained by a mindset which turns the
obvious into the opposite. If this is indeed so, the mindset must influence affairs
other than those related to computing. In the following I quote evidence that this
is indeed the case, that indeed the mindset is so pervasive as to have been identified
elsewhere well before the first attempts at formal verification of programs, that the
belated identification in computing brands this field as a backwater in the world of
ideas. The mindset is called ‘modernism’; its sane alternative goes by the name of
‘rhetoric’. The success of inspections is a triumph in computing of rhetoric over its
modernist alternative.

Of rhetoric I will say no more than the obvious: that ‘specious eloquence’ is not its
primary meaning. In one of C. P. Snow’s Two Cultures it is not necessary to make
this point. In the other, it very much needs to be made. Rhetoric, then, is the art
of persuasion. This is the case independently of whether the motive for persuasion is
honourable. The primary tool of rhetoric is a natural language. In certain specialized
and limited contexts graphs, tables and algebraic expressions are supporting tools
of rhetoric. It is the modernist delusion to believe that such specialized and limited
contexts are strongholds from which the entire range of rational discourse is to be
conquered.

More needs to be said about modernism. My starting point has been a paper by



Editorial 553

Donald McCloskey entitled ‘The Rhetoric of Economics’ [3]. McCloskey argues that
rhetoric should be the main intellectual tool of economists, but that this central posi-
tion has been usurped by a complex of attitudes and techniques for which McCloskey
uses the term ‘modernism’, which he introduces in the following way:

(It) is an amalgam of logical positivism, behaviourism, operationalism, and the
hypothetico-deductive model of science. Its leading idea is that all sure knowl-
edge is modeled on the early 20th century’s understanding of certain pieces of
19th-century physics. To emphasize its pervasiveness in modern thinking well
beyond scholarship it is best labeled simply ‘modernism’, that is, the notion
...that we know only what we cannot doubt and cannot really know what we
can merely assent to.

By now modernism has achieved a venerable old age. Here are modernist quotes;
one each from the 17th, 18th, 19th and 20th centuries.

In the 17th century, symbolic logic did not exist. Leibniz seems to have been the
first to see its possibility. He was optimistic about its range of applicability, writing
(quoted in [6]):

If controversies were to arise, there would be no more need of disputation
between two philosophers than between two accountants. For it would suffice
to take their pencils in their hands, to sit down to their slates, and to say to
each other (with a friend as witness, if they liked): Let us calculate.

Moving to the 18th century, I have the following from David Hume (quoted in [3]):

When we run over libraries, persuaded of these principles, what havoc must we
make? If we take in our hand any volume — of divinity or school metaphysics,
for instance — let us ask, Does it contain any abstract reasoning concerning
quantity or number? No. Does it contain any experimental reasoning concern-
ing matter of fact and existence? No. Commit it then to the flames, for it can
contain nothing but sophistry and illusion. (Italics Hume’s.)

Lord Kelvin: ‘When you cannot express it in numbers, your knowledge is of a
meagre and unsatisfactory kind’ (cited in [3]). As representative of the 20th century,
I select Wittgenstein who wrote: ‘Anything that can be said at all, can be said
clearly. And of what cannot be said clearly, one must not speak’. A postmodernist
retort (Michael Polyani in 1962, as reported by McCloskey [3]): the methodology of
modernism sets up ‘quixotic standards of valid meaning which, if rigorously practiced,
would reduce us all to voluntary imbecility’.

McCloskey was concerned with the ill effects of modernism in economics. Susanne
Langer [2] makes a similar observation for psychology:

Psychologists have probably spent almost as much time and type avowing their
empiricism, their factual premises, their experimental techniques, as recording
experiments and making general inductions.

A few pages later:

The physicists’ scheme, so faithfully emulated by generations of psychologists,
epistemologists, and aestheticians, is probably blocking their progress, defeat-
ing possible insights by its prejudicial force. The scheme is not false ...but



554 [Editorial

it is bootless for the study of mental phenomena ...Instead of a method, it
inspires a militant methodology.

And it is this militant methodology that goes under the name of ‘modernism’.

And not only psychologists, epistemologists, and aestheticians suffer self-inflicted
debilitation by adopting modernist trappings. The modernist urge to derive re-
spectability from the formal, the abstract, and the numerical has given, for example,
matrix and graph theory an unwarranted prominence in economics, sociology, psy-
chology, management science, and computer science. These crypto-mathematicians
follow a modified form of Kelvin’s dictum: ‘When you cannot express it as a math-
ematical theorem, your knowledge is of a meagre and unsatisfactory kind’. without
realizing that, from the point of view of their nominal discipline, if it can be expressed
as a mathematical theorem, the knowledge is of a meagre and unsatisfactory kind.?

Mathematics plays a crucial role in the understanding of the tension between mod-
ernism and rhetoric, but is poorly understood. On the one hand the modernist mind
has seen mathematics as an example to be followed: surely here is the ultimate in
precise and secure knowledge, an example to be emulated by all scholarship. On the
other hand, it has escaped the modernist that mathematics is still done by rather
old-fashioned rhetoric. Where the psychologist is a heavy user of computers (for
computation), the mathematician has no such need. Hilbert’s program, a typically
modernist proposal, has never been followed in mathematics. However, it is the direct
precursor of the program verification enterprise in computer science.

I do not want to claim that the only possible language of rhetoric is a purely natural
one. Algebraic notation, introduced centuries ago, is now very much accepted in the
rich, unmodernist rhetoric of mathematics. It is important to realize that algebraic
notation can be used as extension to natural language to clarify what would be more
obscure otherwise. But such use need not be part of a formal method. Algebraic
notation can be used in rigorous, informal rhetoric. At one time, then, a successful
shift has been made to incorporate algebraic notation into the language of rhetoric.
On the one hand, the modernist excesses of the past century must be rectified. On
the other hand this must not imply that rhetoric should forever be shielded from
further enrichment by modest incorporation of additional algebraic notation. But we
must keep in mind that modest steps are called for: so far anything beyond English
enriched by formulas, graphs, and tables has proved to be sterile.

To return to the success of rhetoric in computing in the form of the code inspection,
I note that in its reported form, inspections are traditional rhetoric, unaided by
any symbolic logic. I believe that an informal version of some program verification
techniques, such as Floyd’s method of assertions, can make inspections more effective
[8]. My guess is that the optimum consists of including assertions into code, which
consist of English fortified by logic formulas. This is far from a formal system and
much like the traditional rhetoric of mathematics.

In conclusion, let me summarize by saying that logic, formal or not, is only justified
as a tool of rhetoric, that is, as a tool in the art of persuasion. So far, automatic
program verification has been an example of a use of formal logic that fails to persuade
and hence misses any use it could possibly have. The serious consideration of such
a bootless exercise is a manifestation in computing of the ubiquitous mindset that is

2This retort against the modernists is inspired by Frank Knight, quoted in [3].



Editorial 555

called ‘modernism’. Its ancient and forever modern antidote is rhetoric, which has
recently penetrated into computing in the form of code inspections.

If formal logic is ever to have a use in improving the quality of software by means of
verification, it will have to be as an adjunct in a process of rhetoric that persuades a
skeptical and knowledgeable expert, who is personally accountable as a professional,
that the use of such software is justified.

References

[1) Michael Dyer. The Cleanroom Approach to Quality Sofiware Development. John Wiley and
Sons, 1992.

[2] Susanne Langer. Philosophy in a New Key. Harvard University Press, 1948.

[3] Donald N. McCloskey. The rhetoric of economics. The Journal of Economic Literature, 31,
481-515, 1983.

[4] Richard A. De Millo, Richard J. Lipton, and Alan J. Perlis. Social processes and proofs of
theorems. Communications of the ACM, 22, 271-280, 1979.

[5] Peter Naur and Brian Randell, editors. Software Engineering. NATO Scientific Affairs Division,
1969.

{6]) Bertrand Russell. A History of Western Philosophy. George Allen and Unwin, 1946.

[7] Glen W. Russell. Experience with inspection in ultralarge-scale developments. IEEE Software,
pp. 25-31, 1991.

[8] M.H. van Emden. Structured inspections of code. Technical Report DCS-165-IR, Department
of Computer Science,University of Victoria, 1991.

M. vaN EMDEN
University of Victoria, Canada



