PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by ICOT. @ ICOT, 1992

1149

Mental Ergonomics As Basis
For New-Generation Computer Systems

M.H. van Emden
Logic Programming Laboratory, Department of Computer Science
University of Victoria, Victoria, B.C., Canada V8W 3P6
vanemden@csr.uvic.ca

Abstract

Reliance on Artificial Intelligence suggests that Fifth
Generation Computer Systems were infended as a sub-
stitute for thought. The more feasible and useful objec-
tive of a computer as an aid to thought suggests men-
tal ergonomics rather than Artificial Intelligence as the
basis for new-generation computer systems. This objec-
tive, together with considerations of software technology,
suggest logic programming as a unifying principle for a
computer aid to thought.

1 Introduction

When surveying the literature on computing, it is re-
markably difficult to find work directly aimed at making
computers usable as a tool for thought. Even when we
go to publications specialized in Artificial Intelligence,
we find mostly work aiming at simulating or automating
human intellectual functions, but very little on how to
use computers to augment the intellect in the way en-
visaged by pioneers such as Licklider, Engelbart, Taylor,
and Kay.

Until recently it was understandable that the goal of
augmenting the intellect had to be deferred, and that top
priority had to be given to the development of hardware
and systems software that provided a functional basis on
which to proceed towards the main goal. I believe that
this basis now exists and that therefore the top priority
in computing should be to use the existing machinery to
make computers available as tools for thought. It seems,
however, that at present it is still top priority to make
computers faster, bigger, and cheaper. This can only be
explained as a form of inertia: we feel comfortable in an
enterprise blessed with past and continuing success and
it is painful to change emphasis, even if it is towards
what is now really important. '

Let us then take stock and see what progress has been
made towards providing the basis for the goal of mak-
ing a computer into a tool for thought. The hardware
dreamed of by the pioneers has arrived: fast processors,
large memories, sophisticated and comfortable displays,

high-performance networks; all of this available in thou-
sands of enterprises and institutions. Still, we do not use
computers as tools for thought in the way the pioneers
envisaged. Were they unrealistic in their expectations?
Or is it the case that the remaining obstacles can be
overcome?

I believe that the latter is the case, and that the re-
maining barrier is the difficulty of using software. What
is from the larger viewpoint but a tool among many, such
as, for example, a database program, is so complex that
it comes with a fat manual and a programming language
of its own, so that to become an effective user is almost
a career in itself.

This is but one example of many, of a wider phe-
nomenon I refer to as concept fragmentation: that each
job seems to require its own special-purpose solution;
even worse, that the same job in a different context re-
quires a different solution. This, not hardware, is now
the main barrier standing in the way of using computers
to augment the intellect.

In this paper I will argue that the best bet for a uni-
fying principle to overcome this barrier is logic program-
ming. As Artificial Intelligence often comes up in discus-
sions about how to make computers easier to use, it is im-
portant to distinguish the roles to be played by Artificial
Intelligence and Mental Ergonomics®. For this reason, I
sketch the argument from scratch: why there is reason to
believe that computers can be tools for thought, before
going on to explain in what way logic programming, as
ergonomic principle, can help demolish the main barrier
now holding up progress.

2 A synopsis of the argument

This section is what is sometimes called “executive sum-
mary.” Each paragraph summarizes one of the following
sections of the paper.

1Webster's Third International Dictionary: ergonomics — an
applied science concerned with the characteristics of people that
need to be considered in designing and arranging things that they
use in order that people and things interact most effectively and
safely.

1150

Towards Computer-Aided Thought. Writing is
paper-aided thought: while we can do simple sums in
our head, we need help for more complex ones; help of-
fered traditionally by writing on paper.- Similarly, we
can do simple thoughts in our head; to work out com-
plex thoughts, such as plans, proposals, essays, reviews,
critiques, we need writing.

Computers are now widely used as a more convenient
writing tool than a pen on paper. The availability of
programs for spreadsheets, databases, and communica-
tions provide a tantalizing glimpse of a more powerful
aid to thought than the pen on paper ever was. Such
a potent new mixture deserves a name. [chose one
suggested by the familiar concepts of Computer-Aided
Instruction (car) and Computer-Aided Design (cAD). 1
call it Computer-Aided Thought, cAT for short. Today’s
laptop computers already pack the hardware required to
support a powerful CAT system. Thus you will be able
to take it wherever you go, like a Sony Walkman. Let us
call such a package “CATMAN.”

And hardware trends suggest that caTMAN will be
widely affordable, giving unprecedented power to intel-
lectual workers of all ages: school children as well as
professionals, business persons, and scientists.

Why Computer-Aided Thought is an underdevel-
oped area. In spite of spectacular advances in comput-
ing, both in large systems and in personal computers, no
one, not even the most privileged researcher, has a com-
puter available as a congenial tool for intellectual work.
At best she? can call on a hodge-podge of language pro-
cessors, databases and application packages requiring a
bevy of system gurus at her beck and call if she is to
avoid devoting her career to mastering the mechanics of
the various systems.

Improvement is a matter of ergonomics, not AL
A congenial tool for intellectual work needs to handle a
variety of tasks: including database work, text process-
ing, communication, constraint exploration, developing
algorithms. This diversity of tasks has caused a prolifer-
ation of languages so that logically identical tasks need to
be done in an exasperatingly different way, just because
they occur in a different application. The problem is
one of ergonomics (in this case Mental Ergonomics): the
lack of a unifying concept makes current program inter-
faces conceptually fragmented. This is where we should
look in the first place for help, rather than to Artificial
Intelligence.

Logic programming meets the requirements of
Mental Ergonomics. I mention some ergonomic prin-
ciples that help to make computers easier to use and

*or “he.” Here, as elsewhere in my writings, no gender is to be
inferred when none is implied by the context.

review results showing how such principles can be imple-
mented by means of logic programming.

3 Towards
Thought

What is “thought”; what is “intellect”? Why do I con-
sider writing “paper-aided thought®? The analogy about
complex thought spilling over to paper, just as complex
sums do, is due to Susan Horton [1982], who took as
starting point the familiar phenomenon that we don’t sit
down to write an essay with its main line of reasoning
ready in our head. Instead, we only discover what we
want to say as a result of initially unsuccessful and often
frustrating attempts to write down inchoate, preliminary
versions. In this way, Horton concludes, writing allows
us to have thoughts too hard to do in our head.

Another way of expressing Horton’s idea is to say that
writing “augments the intellect.” In 1963 Douglas C. En-
gelbart published the paper “A conceptual framework for
the augmentation of man’s intellect” [Engelbart 1963).
Its first paragraph, which I quote in full, contains a bet-
ter description of “aids to thought™ or “augmentation of
intellect” than I can give.

Computer-Aided

By “augmenting man’s intellect” we mean
increasing the capability of a man to approach
a complex problem situation, gain comprehen-
sion fo suit his particular needs, and to derive
solutions to problems. Increased capability in
this respect is taken to mean a mixture of the
following: that comprehension can be gained
more quickly; that better comprehension can
be gained; that a useful degree of comprehen-
sion can be gained where previously the situa-
tion was too complex; that solutions can be pro-
duced more quickly; that better solutions can
be produced; that solutions can be found where
previously the human could find none. And
by “complex situations” we include the profes-
sional problems of diplomats, executives, social
scientists, life scientists, physical scientists, at-
torneys, designers — whether the problem situ-
ation exists for twenty minutes or twenty years.
We do not speak of isolated clever tricks that
help in particular situations. We refer to a way
of life in an integrated domain where hunches,
cut-and-try, intangibles, and the human “feel
for a situation” usefully coexist with power-
ful concepts, streamlined terminology and nota-
tion, sophisticated methods, and high-powered
electronic aids.

Conventional computer applications are much further
developed in the area of what Engelbart calls “powerful

concepts, streamlined terminology and notation, sophis-
ticated methods.” I regard the area of “hunches, cut-
and-try, intangibles and ‘human feel for the situation’ ”
the one where writing helps as an aid to thought in the
sense of Horton. Engelbart’s vision will be realized when
a computer can be used as a congenial tool for writing,
giving fluent access to spreadsheets, databases (local as
well as remote), numerical and statistical libraries and
SO on.

Other prophetic early papers that improved upon
much later thinking are by Bush [1945] and Lick-
lider [1960]. For an overview of Engelbart’s subse-
quent work in the Augmented Knowledge Workshop, see
[Engelbart 1988].

4 Why
Computer-Aided Thought is
an underdeveloped area

A present-day personal computer can provide a word pro-
cessor, a spelling checker and a thesaurus. This combi-
nation is a powerful advance over pen and paper, and
therefore qualifies as a correspondingly powerful aid to
thought. Personal computers can also run packages for
databases, spreadsheets, and computer mail. But al-
though these are potentially valuable extensions, the re-
sulting combination is not easy enough to use to qualify
as a computer tool for thought. The existence of the
components conjures up a tantalizing vision of such a
tool, but the reality of ergonomics turns the vision into
a mirage.

To appraise the situation, let us consider what per-
sonal computers have given us, and what’s lacking.

What we do have. The amazing thing about personal
computers is that they have caused such large step in
the direction of a computer tool for thought. The early
computers were operated in a closed shop, to which users
submitted their jobs, which were collected in batches and
run.

Timesharing brought a dramatic change: from a
turnaround time of hours to instantaneous interaction.
Effectively, the timesharing user has the machine to him-
self. And even in the sixties, these machines were not
small compared to contemporary personal computers. So
it was not obvious that a dramatic change would result
from the next step, the introduction of the personal com-
puter. Yet they made an enormous difference and that
was because of their low cost. This has two effects:

I. Small firms and individual software designers can
afford machines of their own.

2. The potential financial rewards in the software mar-
ket became much greater.

1151

The result should convince sceptics of the power of a
sufficiently free market: it resulted in an unprecedented
improvement in user interfaces.

This is the more amazing when we realize that since
the early sixties timesharing computers have been used
for word processing. These installations commanded the
best in programming talent and were largely devoted to
research. Yet nothing was produced that can compare
with the better word processing packages that appeared
on the market soon after personal computers took off.
For most of the 1980’s, Unix-based workstations, with
more powerful hardware than personal computers, had
word processors worse than those on personal comput-
ers. Spreadsheets are an even more striking example.
This type of software, now considered obvious and in-
dispensable, was not even known before the advent of
personal computers.

Even a loaded PC does not come close. Yet, even
this progress still falls far short of what is necessary to
make a personal computer a congenial tool for thought.
Progress has been in the application packages separately,
not in ways to integrate.

Consider, as an example of the need for integration, an
engineer in his daily activities. He makes calculations,
scarches tables, standards, textbooks, draft reports, re-
ceives and sends mail, retrieves and studies drawings and
textual library material, accesses databases (local and re-
mote) and so on. In all these activities separately, com-
puter programs exist that can help. The rapidly falling
cost of hardware makes these programs potentially ac-
cessible to every engineer. But this is a mixed blessing:
if he is to utilize the full potential of all available com-
puter tools, he needs several specialists in attendance, to
be available at a few seconds’ notice.

Even then he will not be able to use the computer
as a truly congenial tool: that is only possible when no
intermediary is needed. At present he needs an inter-
mediary for many applications because of the complex
and idiosyncratic interface provided by the required soft-
ware. And it does not help that every application pack-
age comes with its own, unique programming language,
so that two logically identical jobs in different applica-
tions need to be done in an exasperatingly different way.

Of course the situation sketched here is not unique
to engineers, but is shared by professionals in public or
business administration and in scientific research.

What’s lacking? A plan for improvement has to be
based on a diagnosis of what is wrong. One common
diagnosis can be summarized as:

Computers are difficult to use because they are
not enough like humans. To make progress we
must make them more like humans. Therefore,
before we work directly towards a congenial tool

1152

for mental work, we need progress in Artificial
Intelligence.

But another diagnosis is possible:

Computers are difficult to use because they are
not enough like automobiles, that is, they are
not a tool that one can easily learn to use as
an extension of oneself. To make progress to-
wards a congenial tool for mental work, we need
to work on the ergonomics of interfaces to soft-
ware.

The Japanese Fifth Generation Computer System
project [Moto-Oka 1982] is based on the first diagnosis.
I will argue that to make most rapid progress towards
CATMAN we must work on ergonomics rather than on
Artificial Intelligence. Moreover, that via ergonomics
progress is predictable and will be rapid, as it will be
a matter of elaborating existing software technology. In
comparison, progress in Artificial Intelligence seems un-
predictable: the required results may indeed be around
the corner, or it may be a long time before they materi-
alize (if at all).

5 Improvement is a matter of
ergonomics, not Al

We saw that what stands in the way of CATMAN can be
diagnosed as either a problem in Artificial Intelligence
or as a problem in mental ergonomics. There are two
episodes from the past that should help in deciding which
diagnosis is more fruitful.

In the late 1940’s influential administrators perceived
an acute shortage of experts available to translate Rus-
sian scientific publications into English. In that period
there existed considerable optimism about the feasibil-
ity of fully automatic high-quality translation, result-
ing in several well-funded research projects. Lack of
progress in the fifties, combined with devastating crit-
icism [Bar-Hillel 1964] of the scientific basis of machine
translation, caused funding to be withdrawn.

Let us consider two possible reactions to this failure to
get computers to alleviate the shortage of translators.

Reaction 1: The funds should have been spent on
Artificial Intelligence. The consensus that emerged
in the fifties and caused the demise of projects aiming
at fully automatic high-quality translation, was that the
text to be translated had to be understood, at least to a
certain extent, by the translating agent, human or ma-
chine. Machine translation was therefore seen as a prob-
lem in Artificial Intelligence. Getting a computer to help
in translation was therefore premature — progress in Ar-
tificial Intelligence was needed first.

Reaction 2: The funds should have been spent
on ergonomics. In the fifties, when the objective was
to use computers to help alleviate the shortage in trans-
lators, the technology available to translators consisted
of a typewriter (eleciro-mechanical at best) and some
well-thumbed reference books. In the early eighties, af-
ter machine translation had long been forgotten, and in
response to different pressures, there evolved a set of
computer tools that have enormously increased the pro-
ductivity of translators: word processors, spelling check-
ers, thesauruses, dictionaries, checkers of style and dic-
tion. Such software could have been built soon after 1960
when the first time-sharing systems became available.

Thus in 1960, when it was clear that the approach to
machine translation taken in the fifties was doomed to
failure, it would have been possible to go on te achieve
great increases in productivity at low cost. Instead, it
was concluded that the least tractable stage of translation
was to remain to receive top priority and that research
in Artificial Intelligence was to be motivated in part by
the desirability to use computers to increase productivily
of translators.

A lesson to be learned from this episode. There is
a similarity between the situation now, in which we sus-
pect that computers can do more to help mental work
than is actually the case and the situation in the fifties
when it was hoped that computers could help in trans-
lation. In the case of translation, the least tractable as-
pect of the work was selected, leading to Artificial In-
telligence. In retrospect, more tractable, even mundane,
aspects (namely ergonomics) could have been selected
with great success, not only to increase the productivity
of translators, but of other office workers as well.

Similarly, when considering how to make a computer
into a congenial tool for mental work, there seems to be
a great temptation to fall into the same trap: to view
Artificial Intelligence as panacea.

To end this section on a positive note, I will conclude
with an episode from the past where the right alternative
was selected. There was a time when automobiles were
difficult to use, for several reasons: for example, because
of frequent need for tuning, maintenance, and repair. At
that time, a Plutocrat requiring transportation solved
this problem by retaining a chauffeur and a mechanic
(ideally, but not necessarily, the same person).

When considering obstacles preventing more widely
available transportation by automobile, the following di-
agnoses are possible:

1. build robot chauffeur-mechanics

2. make automobiles easier to use, so that the chauf-
feuring can be done by the person to be transported
and so that only an occasional visit to a garage is
required for tuning, maintenance, and repair.

The Japanese FGCS project® has selected an alterna-
tive in the spirit of the first [Moto-Oka 1982).

6 Logic programming meets the
requirements of Mental Er-
gonomics

In this section] review some of the basic principles of
Mental Ergonomics and comment how logic program-
ming can help implement them in CATMAN: Avoid {ry-
ing to do two things at a time, Allow the user to do the
same thing in the same way (if desired), Ezploit useful
conservatism, and Avord harmful conservatism.

Avoid trying to do two things at a time. It is bad
ergonomics to define a programming language in such a
way that the declarative and the imperative aspects of
programming are not easy to separate. Rather than to
attempt to define these aspects, I will illustrate them by
the example of computing an arithmetic expression using
register-to-register machine operations.
Two tasks have to be distinguished here:

¢ To make sure that the correct expression is evalu-
ated (what is computed; this is the declarative aspect
of programming). What the correct expression is, is
only determined by the application, independently
of the machine on which the computation is to be
performed. Thus, this task can also be thought of
as that of solving the application problem.

o To determine the sequence of register operations and
transfers required to get the correct value in the de-
sired location (how it is computed; this is the imper-
ative aspect of programming). This task contains
the above task. What belongs to this task over and
above the application problem is to control the ma-
chine. To get this additional aspect right is to solve
the control problem.

The example of arithmetical expressions is useful be-
cause every programming language allows these to be
evaluated without having to solve a control problem.
Thus, every programmer, at the level of assembler lan-
guage and up, is familiar with declarative programming.
The problem with conventional languages is that this
type of programming is only possible with arithmetic ex-
pressions, on which the programmer spends only a small
proportion of his time. Most of the work requires areas of
the language where the application and control aspecis

In its original 1982 version [Moto-Oka 1982]. What the project
has actually done since then is more sensible. In fact, they have
been a prolific contributor to logic programming, my proposed
technical basis for CATMAN. But the preoccupation with paral-
lelism and with big machines remains, and this can only be traced
back to the initially intended role of Artificial Intelligence.

1153

of the task are intimately intertwined. As a result, it is
possible for an error in control to cause a wrong answer.
As a result, a programmer in such a language is forced
to try to do two things at the same time.

Logic as a programming language allows a decompo-
sition of an algorithm into what Kowalski [1979] calls
its logic component (corresponding to the declarative as-
pect) and its control component (corresponding to the
imperative aspect). A consequence of Kowalski's ap-
proach is that the declarative and imperative aspects are
separaled, so that an errorin control cannot cause an er-
roneous answer to appear; at worst it will cause failure to
find an answer. The advantage is that there is no need to
solve the application and control problems at the same
Lime.

Allow the user to do the same operation in the
same way (if desired). In the existing personal com-
puler systems, the closest approximations to CATMAN
require the use of separate programming languages for
databases, spreadsheets, intensive numerical computa-
tion, system programming, document preparation, the
shell, and perhaps even other ones. This means that the
same operation (such as procedure and data declaration,
procedure call, case selection, iteration, and so on) has
to be done in a different way in each of these different
languages, violating a principle of ergonomics.

It has been shown that logic programming can
be the basis of many different types of program-
ming language: functional [Cheng et al. 1990], im-
perative [van Emden 1976, Rosenblueth 1989], object-
oriented [Davison 1988], stream-oriented [Taylor 1989],
as well as for database querying [Ceri et al. 1990]. Of
course, within this framework there are still many oppor-
tunities for violating the ergonomic principle by undue
proliferation of variety. But by using logic as common
framework for whatever different languages are needed,
improvement is made easier.

Exploit useful conservatism. A conceptual interface
represents a beneficial kind of conservatism: it is an in-
terface modelled on a familiar concept so that the known
operations on the concept can serve as model for the com-
puter operations that need to be learned. The prototyp-
ical example of a conceptual interface is the wysiwya
editor, where the familiar concept is a sheet of paper.
Examples of conceptual interfaces that fit well in logic
programming are: the conversational pariner, the pocket
calculator, spreadsheets and tables, and the filling in of
blanks. 1 elaborate on these below.

Lack of a conversational partner as conceptual inter-
face can lead to the kind of frustration eloquently voiced
by John McCarthy, who complained* that even to get a
computer to acquire a simple symbol manipulation skill

4In debate with Sir James Lighthill on BBC TV in 1874,

1154

is like having to perform brain surgery. He explained
that the goal of his research is to program computers in
such a way that one just needs to tell them. That is, to
model the interface on that of a conversational partner,

This ideal has been realized to a certain extent by
mMyCIN [Shortliffe 1976], an early expert system. The
user interacts with it in the following way. If the user
lacks information, he asks a question to which the ma-
chine may respond with an answer. If the user knows
something that the computer doesn’t, he tells a fact, or
a rule. If the user is puzzled by an answer, then he can
request an explanation, which comes in the form of facts
and rules chaining the facts to the answer. Sergot [1982]
and Shapiro [1983], have shown that this conceptual in-
terface finds a natural home in logic programming. They
added to the initial version embodied in MYCIN the possi-
bility of making the computer and user play symmetrical
roles,

The programming language LISP is an example of a
conceptual interface, albeit in an inverted way. The basic
interaction mode in risP does not need to be learned
because it is the same as that of a pocket calculator:
enter expression to be evaluated, get in return its value.
The curious inversion lies in the fact that the familiar
concept, the pocket calculator, is of more recent origin
than the beneficiary of the conceptual model, namely
LISP itself.

In the early days, computers were used in a rigidly
planned way. With the advent of time-sharing, users
were given the illusion of having a machine of their
own, allowing in principle an intimate, interactive, and
spontancous use. Software to exploit this possibility
was slow in coming: only with the advent of pro-
grams modelled on the spreadsheet as conceptual in-
terface for personal computers has this mode of use
been convincingly demonstrated. A similar, but signifi-
cantly different, interface is that of a fable, where rows
and columns play different roles. Both interfaces have
been shown to be compatible with logic programming
[van Emden et al. 1986, Cheng ef al. 1988).

Filling in the blanks of a form is a useful, though
not widely loved, conceptual interface. It has been ex-
ploited in Query-By-Example |Zloof 1977] to provide one
of the more congenial query languages for databases.
The queries of the logic programming language Prolog
are similar [van Emden 1977, Kowalski 1979).

Avoid harmful conservatism. Exploiting a concep-
tual interface is a useful form of conservatism. Insisting
that only English is fit for humans to communicate with
our tools is not. The optimism about the utility of nat-
ural language for a user-computer interface is based in
no small degree on the work of T. Winograd [1972], who
himself, however, subsequently made the following ob-
servation [Winograd and Flores 1987):

The practicality of limited natural language
systems is still an open question. Since the
nature of the queries is limited by the formal
structure of the data base, it may well be more
efficient for a person to learn a specialized for-
mal language designed for that purpose, rather
than learning through experience just which
English sentences will and will not. be handled.
When interacting in natural language it is easy
to fall into assuming that the range of sen-
tences that can be appropriately processed will
approximate what would be understood by a
human being with a similar collection of data.
Since that is not true, the user ends up adapting
to a collection of idioms - fixed patterns that
experience has shown will work. Once the ad-
vantage of flexibility has been removed, it is not
clear that the additional costs of natural lan-
guage (verbosity, redundancy, ambiguity, etc.)
are worth paying in place of a more streamlined
formal system.

An interface where the user is confronted with seem-
ingly random breakdowns and has to guess at what will
work and what won't, is frustrating and inefficient —
bad ergonomics.

A special-purpose notation can not only be a conve-
nience, but even a genuine augmentation of the intellect.
Such a notation should be seen as evolution of language,
helping further development of the intellect. Such co-
evolution of language and intellect should be allowed o
continue in the computer age and should not be stifled by
doctrinaire insistence that only English is fit for humans.

“Natural, easy-to-use” interfaces are Lo be approached
warily when they are slower in use than other interfaces.
Windows and a mouse can be extremely enticing when a
novice finds that already after the first half hour he can
get simple jobs done on a computer. But an interface
that takes ten times as long to learn and allows the user
to work twice as fast is worth the extra trouble after
four and a half hours of use. As most users spend over a
hundred, or even over a thousand hours with a computer
every year, it is clear that preference for the “natural and
easy-to-use” can be a form of harmful conservatism.

7 Concluding remarks

If 2 moratorium on hardware improvement were to go
into effect today, it would take decades before software
caught up far enough to exploit hardware to a reasonable
extent. Such a degree of exploitation includes the nse of
a computer as a congenial tool for thought, and deserves
to be primary focus of computer science.

To exploit the potential of computers as tools to aug-
ment the intellect, the Fifth-Generation Computer Sys-
tems Project has relied on expected advances in Artificial

Intelligence. Experience in attempts to use computers to
increase productivity in translation between texts in nat-
ural language suggests that more mundane approaches,
summarized under Mental Ergonomics, are more effec-
tive.

I have argued against the use of Artificial Intelligence
and of natural language processing by computer. Lest I
be misunderstood, let me emphasize that this concerned
the particular applications addressed in this paper. Ar-
tificial Intelligence as cognitive science is as interesting
and important as particle physics and cosmology. Natu-
ral language processing by computer has by now reached
the stage where it can be a valuable aid to human trans-
lators, and to authors more generally. This is consistent
with the reservations quoted from Winograd.

Acknowledgments

Generous support was provided by the British Columbia
Advanced Systems Institute, the Canada Natural Science
and Engineering Research Council, the Canadian Insti-
tute for Advanced Research, the Institute of Robotics
and Intelligent Systems, and the Laboratory for Au-
tomation, Communication and Information Systems Re-
search.

References

[Bar-Hillel 1964] Y. Bar-Hillel. Lanrguage and Informa-
tion. Addison-Wesley, 1964.

[Bush 1945] Vannevar Bush. As we may think. In Adele
Goldberg, editor, A History of Personal Worksta-
tions, pages 237-247. Addison Wesley, 1988. First
published in Atlantic Monthly, July 1945,

[Ceri et al. 1990) S. Ceri, G. Gottlob, and L. Tanca.
Logic Programming and Databases. Springer, 1990,

[Cheng et al. 1988] M.H.M. Cheng, M.H. van Emden,
and J.H.M. Lee. Tables as a user interface for
logic programs. In Proceedings of the International
Conference on Fifth Generation Computer Systems
1988, pages 784-791, Tokyo, Japan, November—
December 1988, Ohmsha, Ltd.

[Cheng et al. 1990) M.H.M. Cheng, M.H. van Emden,
and B.E. Richards. On Warren’s method for func-
tional programming in logic. In David H.D. War-
ren and Peter Szeredi, editors, Logic Programming:
Proceedings of the Scventh International Confer-
ence, pages 546-560, Jeruzalem, 1990. MIT Press.

[Davison 1988] A. Davison. Polka: a parlog object-
oriented language. Technical report, Department of
Computing, Imperial College of Science and Tech-
nology, University of London, 1988.

1155

[Engelbart 1963] D.C. Engelbart. A conceptual frame-
work for the augmentation of man's intellect. In
P.W. Howerton and D.C. Weeks, editors, Vistas in
Information Handling, pages 1-29. Spartan Books,
1963.

[Engelbart 1988] Douglas Engelbart. The augmented
knowledge workshop. In Adele Goldberg, editor, A
History of Personal Workstations, pages 187-232.
Addison Wesley, 1988.

[Horton 1982] S. Horton. Thinking Through Writing.
Johns Hopkins University Press, 1982.

[Kowalski 1979a] R.A. Kowalski. Algorithm = Logic +
Control. Communications of the ACM, 22:424-436,
1979.

[Kowalski 1979) R.A. Kowalski. Logic for Problem-
Solving. Elsevier North-Holland, 1979.

[Licklider 1960] J.C.R. Licklider. Man-computer sym-
biosis. In Adele Goldberg, editor, A History of Per-
sonal Workstations, pages 131-140. Addison Wes-
ley, 1988. First published in /RE Transactions on
Human Factors in Electronics, March 1960, pp. 4-
11.

[Moto-Oka 1982] T. Moto-Oka, editor. Fifth-Generation
Computer Systems. North-Holland, 1982.

[Rosenblueth 1989] D. Rosenblueth. Ezploiting Deter-
minism in Logic Programming. PhD thesis, Univer-
sity of Victoria, 1989.

[Sergot 1982] M. Sergot. A Query-The-User facility for
logic programming. In P. Degano and E. Sandewall,
editors, Proceedings European Conference on Inte-
grated Interactive Computing Systems. North Hol-
land, 1982,

[Shapiro 1983] Ehud Shapiro. Algorithmic Program De-
bugging. MIT Press, 1983.

{Shortliffe 1976) E.H. Shortliffe. Computer-Based Medi-
cal Consultations: MYCIN. Elsevier, 1976.

[Taylor 1989] Stephen Taylor. Parallel Logic Program-
ming Techniques. Prentice Hall, 1989.

[van Emden 1976] M.H. van Emden. A proposal for an
imperative complement to prolog. Technical Report
(S-76-39, University of Waterloo, 1976.

[van Emden 1977] M.H. van Emden. Computation and
deductive information retrieval. In E. Neuhold, ed-
itor, Formal Description of Programming Concepls,
pages 421-440. North Holland, 1977.

1156

[van Emden et al. 1986] M.H. van Emden, M. Ohki, and
A. Takeuchi. Spreadsheets with incremental queries
as a user interface for logic programs. New Gener-
ation Computing, 4:287-304, 1986.

[Winograd 1972] T. Winograd. Understanding Natural
Language. Edinburgh University Press, 1972,

[Winograd and Flores 1987] T. Winograd and F. Flores.
Understanding Computers and Cognition. Addison-
Wesley, 1987.

[Zloof 1977] M. Zloof. Query-By-Example: a database
language. IBM Systems Journal, 16:324-343, 1977.

