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Abstract. Conventional plotting programs adopt techniques such as adaptive
sampling to approximate, but not to guarantee, correctness and completeness in
graphing functions. Moreover, implicitly defined mathematical relations can im-
pose an even greater challenge as they either cannot be plotted directly, or oth-
erwise are likely to be misrepresented. In this paper, we address these problems
by investigating interval constraint plotting as an alternative approach that plots
a hull of the specified curve. We present some empirical evidence that this hull
property can be achieved by a ���� algorithm. Practical experience shows that
the hull obtained is the narrowest possible whenever the precision of the underly-
ing floating-point arithmetic is adequate. We describe IASolver, a Java applet [9],
that serves as testbed for this idea.

keywords. interval constraints, constraint propagation, interval arithmetic, implic-
itly defined relations, honest plotting, interactive plotting

1 Introduction

Mathematical modelling in science and engineering often requires

– solving a system of numerical equalities or inequalities. As “equation” is not a
sufficiently general term, we refer to them collectively as constraints.

– visualizing the solution to the system as a two-dimensional graph. The solution is in
general a relation between the two variables selected as coordinates. This relation
may be functional or not.

Existing software concentrates on the case where the relation is the functional one
specified by � � ����. The simplest approach is to sample � at equidistant values of
� and to connect the resulting points by straight lines. This has the disadvantage that
detail is lost where the function changes rapidly. Adaptive plotting attempts to allocate
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the available number of points in such a way that this problem is avoided as much as is
possible with the given number of points.

Even when adaptive sampling is used, significant features may fall between succes-
sive points and are missed in the plot. Independently of the use of adaptive sampling,
two difficulties remain. First, as discussed in [14], numerical rounding errors may ac-
cumulate unexpectedly when evaluating complex equations, and thus cause the plot to
stray from the correct path. Second, and more seriously, implicitly defined curves, such
as �� � �� � � and ����� �	� �� � �	��� ����� need to be converted to the functional
form � � ����. Sometimes this conversion is straightforward, sometimes not. Without
conversion to functional form, one must resort to local methods such as [3, 13]. This is
not always successful. The problem of implicitly defined relations is also addressed in
the contouring of functions [12].

The method of interval constraint plotting has the property that the plot shows a
hull of the function or relation. This property holds independently of rounding errors.
In cases where the precision of the underlying floating-point system is insufficient, this
limitation shows by the hull being wider than necessary, but it remains a hull. Otherwise,
the plotted hull is the smallest one allowed by the resolution resulting from the selected
size of pixel. The Java applet IASolver [9] designed and implemented by one of us (TH)
is based on the method of interval constraint plotting.

In this paper we start by reviewing conventional plotting methods. We contrast it
against what we call raster-scan plotting, which is extremely simple to implement and
can handle any relation. But raster-scan plotting is inefficient, suffers from deformations
and is susceptible to rounding errors. To remedy these problems we first introduce the
general ideas of interval arithmetic and interval constraints and then show how these
can be used to eliminate the problems of raster-scan plotting. The result is what we call
interval constraint plotting.

2 Conventional Plotting

Conventional techniques for plotting a function � � ���� usually apply something like
the following algorithm:

for (x = a; x <= b; x = x + dx)
plot(x, f(x));

In its naive form, dx is a constant which means function � � ���� will be sampled
at a predetermined number of equally spaced points. This is not satisfactory for curves
that oscillate much more strongly in some areas than in others. In adaptive plotting, dx
is a variable determined by the program to add more points between the original ones
to more accurately draw strongly oscillating curves.

In [6], Fateman identifies undersampling as the major drawback in these conven-
tional methods. Even adaptive sampling does not protect against an injudicious choice
of points. The plotter may still choose insufficiently many points to faithfully render
part of a curve. This problem is illustrated in Figure 1, produced by Mathematica 3.0.
The left plot was produced with naive plotting, while the right plot employed adaptive
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plotting. Notice that the graph becomes erratic when � � 
, even when adaptive plot-
ting is used, as the sampling density cannot adapt to the increasingly rapid oscillation
of ��������. Figure 2 shows the hull of the graph computed by IASolver at two res-
olutions, corresponding approximately to the effective resolutions used in the plots of
Figure 1. The area of rapid oscillation near � � 
 is represented in these latter graphs
as a rectangular block of size �
� ��� � ���� �� which indicates that the function takes
values in ���� �� when � � �
� ���, but provides no other information.

Fig. 1. Two plots of �������� over the range [�� �] using Mathematica 3.0 with non-adaptive
plotting on the left and adaptive plotting on the right.

Fig. 2. Interval constraint plots of �������� using IASolver on the range [0,0.1] with a 64x64 grid
on the left and a 256x256 grid on the right.

Implicitly defined mathematical relations introduce a more severe problem for con-
ventional plotting techniques. Consider the circle defined by �� � �� � �. It ap-
pears to be necessary to transform this innocent equation to � � ���� �� or to
� � ��� � � � � �	� �. The following is a Matlab session to plot this circle:

>> x = -1:0.001:1; plot(x,sqrt(1-x.ˆ2));
>> hold on; plot(x,-sqrt(1-x.ˆ2));

However, such transformations are not always convenient. Consider the implicitly
defined relation ����� �	� �� � �	��� �����. Isolation of either � or �with respect to the
other cannot easily be found. Most plotting programs do have some kind of a contour
plotting facility which can be set to plot the constraint ���� �� � 
 by plotting the
single � � 
 contour for the function ���� �� � �. For example, the following Matlab
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commands generate the contour plot shown in the left half of Figure 3. Mathematica
and Maple offer similar features. The quality of this plot will be discussed later.

>> x= 0:0.2:6.2; y= 0:0.2:6.2; [X,Y] = meshgrid(x,y);
>> Z = sin(X.*cos(Y))-cos(Y.*sin(X));
>> contour(x,y,Z,1)

The plot on the right half of Figure 3 will be discussed in the next section.

Fig. 3. A Contour plot on the left and a Density plot on the right for the function ����� ��� �� �
����� ����� over the range [�� 	�]. The contour plot was made using Matlab 5.1, the density plot
was generated by applying the Mathematica 3.0 function DensityPlot to Abs[Sin[x Cos[y]]-
Cos[y Sin[x]]].

3 Towards Truth in Plotting

3.1 The Raster-Scan Plotting Algorithm

One can plot any equality relation ���� �� � 
 by evaluating the relation at each point
of a raster. We call this raster-scan plotting. It is basically the following:

for (x = a; x <= b; x = x + dx)
for (y = c; y <= d; y = y + dy)

if (abs(f(x,y)) <= eps) plot(x,y);

Inequality relations are handled in the same way. In fact, the condition in the if
statement can be any boolean expression, a freedom that has been exploited to obtain
plots of fractals, where the condition depends on the behaviour of an iteration. Several
plotting packages offer a plotting feature in which different shades of gray are used to
represent the raster plots for different values of epsilon. For example, the Mathematica
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DensityPlot function generates the graph on the right side of Figure 3 for the func-
tion � ����� �	�������	��� ��������. Though there are several problems with raster-scan
plotting, it has the important advantage of being able to handle definitions in functional
as well as in relational form. The problems are:

– If the graph is a line, then the same eps will give a thicker line in some places
than in others. It takes some fiddling to get an acceptable plot. With conventional
plotting it is bad enough that the choice of dx has such far-reaching consequences.
More arbitrariness is introduced with the additional choice of eps.

– It is slow: quadratic in the number of points along a linear dimension.
– It does not adapt to the nature of the plot: featureless areas take as much time as

those with detail.

By combining the idea of raster-scan plot with interval constraints, we avoid these three
problems. The idea is to replace the above code by:

for (x = a; x <= b; x = x + dx)
for (y = c; y <= d; y = y + dy) {

solve the constraint system:
f(u,v) = 0 && x <= u <= x+dx && y <= v <= y+dy;
Paint the rectangle with sides [x,x+dx] and [y,y+dy]
black or white according to success or failure.

}

This has the following advantages. First, the arbitrary choice of eps is no longer
needed. Second, a rectangle is plotted white only if the constraint solver can prove that
it contains no solutions to the constraint. As a result, what is plotted in black is a hull
of the curve.

In this way no features are missed in the sense that the hull is shown. Of course,
features are missed in the sense that no detail is shown within the elementary rectangles
��� �� ��� � ��� � � ���. In the following sections we first give a brief introduction to
interval constraints and then discuss how IASolver optimizes the double for-loop shown
here to obtain what appears to be a linear algorithm.

3.2 Brief Introduction to Interval Constraints

In this section, we give an informal introduction to interval constraints and illustrate it
with an example.

Let us consider as example the problem of computing � and � in a circle defined as
�� � �� � �. As is clear by inspection, all pairs of feasible � and � values occur in the
range [��� �]. Suppose that we have obtained additional information of � and � lying
within [
�
� 
��]. Then an interval constraint system of interest is:

�� � �� � � � 
�
 � � � 
�� � 
�
 � � � 
�� (1)

This is a conjunction of three logical formulas related by sharing � and � which
denote unknown reals.
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The logical formulas are regarded as constraints on the possible values of the un-
knowns. An interval constraint implementation computes intervals containing all values
of which it cannot demonstrate that they are inconsistent. That is, all solutions, if any,
are contained within the computed intervals.

An implementation of interval constraints translates the given constraints to primi-
tive constraints. The most commonly used ones are shown in Table 1.

Table 1. Primitive Constraints.

�
 � � �

� � � � �

�� � � for integer � � 	

�
���� � �

������ � �

������ � �

������ � �

� � �

� � �

� � �

Complex constraints such as occur in the left-hand side of the first formula of in-
terval constraint system (1) cannot be processed directly by known methods. Instead,
the interval constraint system given in equation (1) is translated to primitive constraints.
The translation process introduces auxiliary variables ��� ��:

�� � �� � �� � �� � � � �� � �� �

�
 � � � � � 
�� � 
�
 � � � � � 
��

We have chosen this interval constraint system because it could occur when apply-
ing interval constraint plotting to a circle. At this stage the rectangle �
�
� 
�����
�
� 
���
is being considered.

As each of the variables is regarded as an unknown real, it is associated with an
interval containing all values of this real that occur in any solution. To solve such a sys-
tem according to interval constraints, one starts with intervals large enough to contain
all solutions of interest. Then one iterates among the primitive constraints, reducing in-
terval to subinterval as far as necessary to remove values that are inconsistent with the
constraint under consideration.

Consider, for example, constraints of the form 	�
 � �. Suppose that the intervals
for 	� 
 and � are �
� ��� �
� �� and ��� �� respectively, then all three intervals contain
inconsistent values. Now 
 � � and � 	 � imply that 	 � � � 
 	 �. Hence the
values less than � for 	 are inconsistent, in the conventional sense of the word: it is
inconsistent to believe the negation of the conclusion of a logical implication if one
accepts the premises. Similar considerations rule out values less than � for 
 and values
greater than � for �. Removing all inconsistent values from the a priori given intervals
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leaves the intervals ��� �� for 	 and 
 and ��� �� for �. The new bounds � and � are
computed according to the rules of interval arithmetic and require rounding direction to
be set appropriately. Thus interval constraints depends on interval arithmetic [1, 8, 10].

An interval constraint system performs such a constraint contraction for each of the
primitive constraints. Because typically constraints share variables, constraint contrac-
tion usually has to be performed multiple times on any given constraint: every time
another constraint causes the interval for a variable to contract, all constraints contain-
ing that variable have to be contracted again. Because changes are always contractions
and because interval bounds are floating-point numbers, a finite number of contractions
suffices to reach a state where all constraints yield a null contraction. The constraint
relaxation algorithm terminates when this is found to be the case.

For example, let us solve the system (1) with the IASolver implementation, starting
with two-way infinite intervals for all variables. The system stabilizes with an interval
contained in ���� �� for �, and similarly for �. Adding the additional constraints that
� � [
�
� 
��] and � � [
�
� 
��] results � and � to be narrowed to [
�
� 
�
���������].

Thus in interval constraint plotting, the original rectangle �
�
� 
��� � �
�
� 
��� un-
dergoes a considerable reduction to a subset of �
�
� 
�
��� �
�
� 
�
��.

As the consistency method only removes inconsistent values and may not remove
all such values, it may be that the resulting intervals contain no solution. Thus, results in
the consistency method have the meaning: if a solution exists, then it is in the intervals
found.

Some references to interval constraints are [4, 5, 15, 16].

3.3 Interval Constraint Plotting

Conventional plotting, because of the single for loop, is linear, but restricted to func-
tions. Raster-scan plotting handles relations, but is quadratic. It might be thought that
quadraticity is inherent in the ability to handle relations. This is not so. Interval con-
straint plotting is able to dispatch large areas of the plotting space due to failure of a
single interval constraint system. Thus, interval constraint plotting is adaptive in a simi-
lar sense to adaptive plotting of functions: featureless areas of the plotting space require
less computing effort.

An algorithm that exploits this adaptivity might look as follows:

void function plot(Rectangle rect) {
create and solve the interval constraint system
"r(x,y) && point (x,y) is in rect";
if (failure) {paint rect white; return;}
if (rect small enough) {paint rect black; return;}
split rect into four rectangles: nw, sw, se, ne;
plot(nw); plot(sw); plot(se); plot(ne);

}

Execution of this algorithm follows a quad tree [17], but only as far as necessary:
interval constraint systems corresponding to large areas can fail and can then be painted
in one step. How significant a savings does this represent?
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Fig. 4. Number of nodes visited as function of number (N) of subdivisions. Upper line is for the
constraint ����� ������� � ����� �������, lower line is for the constraint �� 
 �� � �. These
two lines are almost linear with slopes of about 14 and 12, respectively.

To get at least a partial answer to this question, we instrumented the interval con-
straint plotting algorithm with a counter to record how many nodes of the complete
quadtree were visited. As relation we chose ����� 
 �	����� � �	��� 
 �������. As ini-
tial rectangle we chose one of size �� by ��. We ran the program with �
 recursive
levels of subdivision, corresponding to grids of size 1x1, 2x2, 4x4, ..., 1024x1024. The
upper line in Figure 4 shows the total number of tree nodes visited for each grid size
from 1 to 1024. The lower line in that Figure shows the corresponding data for the re-
lation �� � �� � � with �� � initially in the interval ���� ��. These data suggests that
the growth rate is linear; a worthwhile improvement over the quadratic nature of the
version directly derived from the raster-scan method.

There is also a heuristic argument for linearity in the interval constraint plotting
method. First observe that the graph of a monotone function that passes through an

 � 
 rectangular grid of cells can intersect at most �
 of the cells. (Indeed, such a
graph will cross at most 
 horizontal grid lines and at most 
 vertical grid lines before
leaving the grid. Thus it can enter into the interior of at most �
 grid cells. If � of these
crossings are grid cell vertices, i.e., intersections of horizontal and vertical grid lines,
then each such crossing accounts for an intersection with at most three new grid cells.
Thus, the graph can intersect at most �� � ��
 � �� � �
 grid cells.) Thus, if we
assume that the constraint solver will fail on all cells that do not intersect the graph, and
if we assume that the relation being plotted eventually becomes locally monotone after
a certain number of subdivisions, then all further refinements of the graph will require
linear execution time in the number of new subdivisions.

4 IASolver

IASolver is a Java applet that provides the dual capabilities of solving non-linear con-
straints and interactively controlled interval constraint plotting. The system has a graph-
ical user interface allowing the user to enter constraint expressions, to initiate interval
stabilization, to view the resulting intervals, and to plot according to selected variables.
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A large number of constraints can be handled, in a large number of variables. Any two
of these can be selected as � and � coordinates for plotting.

For plotting, resolution can be selected up to a maximum of 1024 subdivisions of
the plotting window in each linear dimension. Figure 2 shows two resolutions for the
constraint � � ��������. Any subwindow can be selected using the mouse and made
into the plotting window, giving the effect of zooming. In this way one can proceed to
a resolution where successive floating-point numbers become distinguishable.

To make the interval constraint plotting easier to follow by the user, a number of
modifications to the recursive quadtree algorithm of the previous section have been
made. Instead of proceeding depth-first, IASolver proceeds level by level. In addition,
it keeps the non-failed rectangles in a list. As a result, with nonpathological curves, one
sees the contractions proceed along the curve.

Let us now review the performance of IASolver on the examples introduced in sec-
tion 2. We have already seen in our previous example of ��� ��� (Figure 2) how IASolver
can incrementally reveal details of a curve Compared with the graph in Figure 1 plotted
by Mathematica 3.0, IASolver not only portrays appropriately the problematic region
near � � 
, but also allows more interesting features of the curve to be displayed at a
higher resolution.

Figure 5 shows a comparison of a Mathematica contour plot (on the left) with an IA-
solver interval constraint plot (on the right) of the relation ����� �	� �� � �	��� �����
over the range [
� ��]. There exist a certain number of discrepancies where some re-
gions are disjoint in the Mathematica plot, but not in the IAsolover plot. By analyzing
the solution set locally at the various intersection points we can determine that the graph
produced by IAsolver not only contains the solution set, but is topologically correct as
well. The Mathematica graph has neither of these properties.

Fig. 5. Constraint plots of ����� ��� �� � ����� ����� over the range [�� 	�] in Mathematica 3.0.
(on the left) and IAsolver (on the right)
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Fig. 6. Plots of ����� ��� ��� ����� ����� � � over the range [�� 	�] in Mathematica 3.0. using
contour plotting on the left and density plotting on the right. The IAsolver plot of this relation is
identical to the one in Figure 5

Constraints involving singular functions can create problems for contour methods.
For example, in Figure 6 we see the result of plotting the solutions to � � ����� �	������ �	��� �������
with Mathematica’s ContourPlot on the left and DensityPlot on the right. Observe that
the contour plot incorrectly contains a rough approximation of the graph of singularities
of the function. The DensityPlot graph is somewhat better since it distinguishes between
the singular locus in white and the solution set in black (note that some tuning in the
choice of gray scale map was required to get this particular plot), but it still provides
only an approximation (with no specified error bound) of the solution set. The graph
produced by IAsolver for this constraint is identical to the graph in Figure 5 because
in interval constraints multiplications and divisions are symmetrical components of the
same ternary product constraint.

5 Related Work

Suffern [12] was concerned with the contouring of functions of two variables. This is an
instance of an implicitly defined relation. Suffern uses quadtrees to avoid the quadratic
behaviour in the raster-scan plotting method. The illustrations suggest���� behaviour,
but the paper is not concerned with this aspect. The method uses discrete points in a grid,
hence is subject to the problem of undersampling. There is no guarantee of obtaining a
hull of the contour.

Several papers [6, 2, 11] have used interval methods in plotting. Fateman [6] imple-
mented interval arithmetic for the plotting of functions in Mathematica to enhance its
plotting facilities. He pointed out that interval methods can give the hull property for
graphs of functions, a property he referred to as “honest” plotting.
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6 Conclusions

Interval constraints represents a new approach to numerical computation. It has been
shown to be especially effective for solving large numbers of nonlinear equations and
for nonconvex global optimization. Its basic operation, constraint contraction, relies on
interval arithmetic. Its implementations have benefited from the experience gathered
by interval arithmetic, especially as embodied in the IEEE standard for floating-point
arithmetic, which provides the infinities and directed rounding.

Because interval constraints only eliminates inconsistent values for the variables
concerned, it can never miss solutions (assuming, of course, that the underlying interval
constraint solving hardware/software system is correctly implemented). Hence, when
the outcome includes an empty interval for a variable, there is no doubt that there is
indeed no solution. In other words, there are no “false negatives” in interval constraints.
On the other hand, stabilization with all intervals nonempty only means that if there are
solutions, they must be in the remaining intervals. In other words, “false positives” are
possible.

In our experience, the latter only arises in situations where rectangles are too large or
where the precision of the underlying floating-point system is inadequate. The famous
horrors of numerical analysis, the Wilkinson polynomial and other examples in [7] tend
to show up as false positives in interval constraints.

In interval constraint plotting the asymmetry between absence of false negatives
and the possibility of false positives translates to the fact that a hull of the true plot is
shown. False positives become less likely the finer the subdivision of the plotting area.
Because of this it is encouraging that computation time appears to grow linearly with
the number of subdivisions of the plotting axes.

The asymmetry between absence of false negatives and the possibility of false pos-
itives may appear to be a fundamental limitation. In plotting this hardly appears to be
the case. Suppose we are interested in the � � 
 contour of a continuous function
� � ���� ��. In that case we should invoke interval constraint plotting twice: once for
���� �� � 
 and once for ���� �� � 
. In each case the white areas, where interval
constraints failed, guarantee the absence of solutions of the equality. Rounding errors
have the effect of making these areas slightly too small. Thus, for contours, interval
constraint plotting gives with certainty an area for sure negative values and an area for
sure positive values. In between there is a narrow area of uncertainty. With the usual
proviso, this narrow area is a perfectly precise rendering of the contour.

IASolver does not yet allow such use: it only gives a plot for a single interval con-
straint system (but, of course, with any number of constraints). It cannot yet super-
impose plots arising from different interval constraint systems. Also, it is quite slow,
because the Java virtual machine is. Yet it is fast enough to allow enjoyable experimen-
tation, which the reader is hereby invited to do.
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