Combining Numerical Analysis and Constraint
Processing by Means of Controlled Propagation
and Redundant Constraints

M.H. van Emden

Department of Computer Science,
University of Victoria, Victoria, Canada
vanemden@cs.uvic.ca
http://www.cs.uvic.ca/ vanemden/

Abstract. In principle, interval constraints provide tight enclosures for
the solutions of several types of numerical problem. These include con-
strained global optimization and the solution of nonlinear systems of
equalities or inequalities. Interval constraints finds these enclosures by a
combination of propagation and search. The challenge is to extend the
“in principle” to problems of practical interest. In this paper we describe
the concept of controlled propagation. It uses this in conjunction with
redundant constraints to combine numerical analysis algorithms with
constraint processing. The resulting combination retains the enclosure
property of constraint processing in spite of rounding errors. We apply
this technique in an algorithm for solving linear algebraic equations that
initially simulates interval Gaussian elimination and then proceeds to
refine the result with propagation and splitting. Application of our ap-
proach to nonlinear equations yields an algorithm with a similar relation
to Newton’s method.

1 Introduction

It is not unusual for mathematical models in engineering or management science
to have both discrete and continuous variables and both linear and nonlinear
constraints. Such is the nature of the problems that arise when we abstract from
a real-world situation using physical and probabilistic theories as well as counting
arguments. However, the treatment methods acceptable to practising engineers
and operations analysts are classified as belonging to nonlinear global optimiza-
tion (all variables continuous), linear programming (all variables continuous, all
constraints linear), or combinatorial optimization (all variables nonnumeric, so
that the distinction between linear and nonlinear constraints does not arise).
As a result of being forced into these disjoint categories, the desired mathe-
matical model undergoes considerable change before it can be implemented on a
computer to yield quantitative results. The most problematic of these changes is
linearization. It causes an original model in a modest number of variables to be
translated into a linear one in a much larger number of variables. One is never

sure whether the steps used in linearization are small enough, so that computers
are never big enough.

This situation has existed for decades. In recent years, constraint program-
ming arose to promise interesting changes. These changes started with CHIP
[5], which was restricted to discrete variables. CHIP and its successors made it
possible to apply simultaneously techniques from combinatorics, integer linear
programming, and boolean programming — hitherto mutually exclusive disci-
plines.

This approach has been successful in practice. It has also been recognized as
a breakthrough in the theory of modeling discrete optimization problems; see the
landmark book by J. Hooker [7]. This paper is based on the premise that what
Hooker describes for discrete optimization problems can also be done for their
continuous counterparts. In this way scientific computation will be transformed
in the same way as operations research is transformed in Hooker’s book.

The basis for such an advance already exists in the form of interval constraint
systems. These are constraint systems in the sense of CHIP. The difference is
that variables are continuous. CHIP relies on an efficient way to represent and
manipulate finite domains of values for variables. Interval constraints needs a
corresponding method for sets of reals. This need is met by interval arithmetic.
The generality of constraint processing allows the use of a constraint that requires
a real-valued variable to be integer. That this is an effective way of solving
discrete problems has been shown by Older and Benhamou [?].

Thus it becomes possible to solve problems with both continuous and discrete
variables and with both linear and nonlinear constraints. In this way, constraint
processing does not force unwarranted simplification while assuring that no so-
lution is lost. Moreover, each solution can be located to a precision only limited
by the precision of the underlying hardware.

However, the methods of constraint processing, propagation and splitting,
yield very poor performance by themselves. CHIP and its descendants overcame
this disadvantage by harnessing specialized algorithms in combinatorial opti-
mization and integer linear programming to the constraint-processing frame-
work. In this way all of the advantages were combined: modelling flexibility, the
enclosure property of constraint processing, and performance approaching that
of the conventional methods. This point of view has been elaborated in [7]. It is
the aim of this paper to survey what has been done, and introduce what can done,
to ensure that numerical analysis can be harnessed to the constraint-processing
framework in the same way. Accordingly, we will first describe (section 2) the
work of Hansen, Sengupta, and Walster (summarized in [6]) in using intervals
for nonlinear global optimization. The way they use classical, noninterval nu-
merical methods to speed up the inefficient but sound Moore-Skelboe algorithm
will serve as a model for how classical numerical methods can be used in interval
constraints.

In section 3 we give a brief survey of constraint processing: just enough to
formulate main result on the convergence of fair sequences in propagation. We

extend this by what we call the prefix theorem, the basis for integrating numerical
analysis into interval constraint processing.

With this basis we describe in successive sections applications of the inte-
grated approach to solving linear equations and solving nonlinear equations.

2 Enhancements of the Moore-Skelboe algorithm

Originally, the role of interval arithmetic was to detect situations where rounding
errors are likely to cast doubt upon the result of a numerical computation. Later
it was found that interval arithmetic has a more important role to play: it can
solve problems that numerical analysis cannot. An example is that of finding the
global minimum of a function with an unknown number of local minima. This
can be done by the Moore-Skelboe algorithm. However, it is very inefficient. It
performs an exhaustive search that finds the global optimum without using any
of the techniques of numerical analysis for finding local optima. Without com-
promising the advantages of the Moore-Skelboe algorithm, Hansen and Walster
extended it by adapting the techniques of numerical analysis. We describe their
method briefly.

The Moore-Skelboe algorithm subdivides n-space into boxes and computes
an interval for the objective function for each box. The bounds of these intervals
are used to eliminate, according to the branch-and-bound principle, regions that
do not contain the global optimum.

In conventional numerical analysis one uses a necessary condition for a lo-
cal optimum: that the gradient vanishes. Thus one solves the nonlinear vector
equation that expresses this condition. Hansen, Sengupta, and Walster [6] ex-
tend the Moore-Skelboe algorithm by using interval arithmetic to determine,
for each box arising in the branch-and-bound search, whether it is possible to
contain any point at which the gradient vanishes. They use the interval Newton
operator [10,6]. In this way many more boxes are typically eliminated in the
search than in the original Moore-Skelboe algorithm. In the worst case, there
is no positive effect. This in contrast to the classical numerical methods where
there are severe convergence problems in solving nonlinear vector equations.

Not all points with zero gradient are local minima. In numerical analysis this
uncertainty is decided by using another necessary condition: that the matrix
of second derivatives of the objective function be positive definite at the point
with zero gradient. Hansen and Walster use this condition indirectly to obtain
a further enhancement of the Moore-Skelboe algorithm: an easily computable
necessary condition for the positive definiteness is that the trace of the matrix
of second derivatives be positive. This possibility can sometimes be excluded
by evaluating the trace in interval arithmetic. Thus a necessary condition for a
necessary condition is used to further prune the search space.

In constrained global optimization, the Kuhn-Tucker and the John condi-
tions are necessary conditions for minima. Hansen et al. also studied this and
used these necessary conditions in the same way as the ones mentioned above.
For further developments in this direction, see Kearfott [8]. When translating

from interval arithmetic to interval constraints, the same opportunities exist for
pruning the search space.

The reason for reviewing this work is to distill from it the principle of pruning
by redundant constraints:

One starts with a correct, complete and universally applicable solving
method based on search. One finds that it is too inefficient for most
practically interesting problems. One adapts a technique of numerical
analysis that is based on a necessary condition for solutions. By adding
this condition as a redundant constraint, one reduces the search space
sufficiently to increase the size of problem that can be handled without
losing the correctness properties of the original method.

In the next section we review constraint processing to show how this principle
can be applied.

3 Constraint processing

In constraint processing one can distinguish point methods from set methods. In
the former, a single value is associated with each variable. Each constraint comes
with a rule to adjust a variable’s value using the values of the other variables.
This method originated with Southwell’s relaxation method [11] for systems of
linear algebraic equations. It was adopted by Sutherland in his Sketchpad system
[13]. The approach was further developed by Steele [12] and Borning [4] and his
school.

The point method has in common with numerical analysis that no certainty
can be assigned to its results. The set method, on other hand, associates a set of
values with each variable. It is a property of the contraction operators applied
in the propagation algorithm that values are only removed from a set if they do
not occur in any solution. As a result, it is a property of the solving algorithms
employed in the set method that it is a logical consequence of the constraints
that no solutions exist outside the Cartesian product of the sets associated with
the variables.

In this section we review constraint systems, interval constraint systems, and
their solution methods. Most of this is due to Benhamou and Older [3].

3.1 Constraint systems

To demonstrate the versatility of the approach, we first present an example of a
non-numeric constraint system.

Ezample 1. Let us consider a constraint system representing a graph colouring
problem. Now the constraints all have two arguments and have as meaning the
complement of the equality relation. Suppose that for one of the constraints, the
domains of the variables are {red} and {red, yellow, blue}. Then the contraction
operator for this constraint leaves the first unchanged and removes red from

the second. If the domains are initially {red, yellow} and {red, yellow, blue}, then
contraction operator leaves both domains unchanged.

We present the next example in a more mathematical, but informal style.
Then we define constraint systems formally and use the example to illustrate
the some of the features of the formal definition.

Ezample 2. Consider a system with set of constraints

{p(x1,22,21), 8(x3, 21, 24), 9(x3, T5), p(25, 5, 1) }-

The variables x1,...,z5 are of types R, Z, N, R, and Z respectively. The
meaning of p is given by p(z,y, z) is true iff x y = z. Thus p names the ternary
product relation. Similarly, s denotes the ternary sum relation and g the binary
greater-than relation.

The constraint system describes a constraint satisfaction problem (CSP)
which is to find a value for each variable of the corresponding type in such
a way that all constraints are true.

Definition 1. A constraint system has the following attributes.

(1) A set {T1,..., T} of sets called types.

(2) A set {z1,...,x,} of variables where x; € T; (“ x; is of type T;”) for
ie{l,....,n} and j € {1,... k}.

A valuation v is a map in {z1,...,z,} — Th U---UT, such that for all i €
{1,...,n} we have v(x;) € T;.

(3) A state, which is Dy x -+ X Dy, where, fori € {1,...,n}, D; CT;. We say
that, in this state of the constraint system, D; is the domain of x;.

(4) A set {Aq, ..., Ap} of constraints where A; is an atomic formula: a predicate
symbol followed by a sequence of variables.
{z1,...,2,} is the set of all variables occurring in {Ay,..., An}.

If A is an atomic formula and v a valuation, then A/v is the substitution of
v(x;) for z; in A, for alli € {1,...,n}.

The index sequence s of a constraint A is the sequence of occurrences of variables
in A. Thus |s| is the arity of A and s maps {1,...,|s|} to {1,...,n} in such a
way that s(j) = k iff xi is the j-th variable occurrence in A.

The meaning p of the predicate symbol in A is a relation, which is a set of tuples
of length |s|. The j-th element of such a tuple is an element of Ts,. The relation
p is defined by T € p iff AJv is true, where v is the valuation such that, for all
ie{l,...,n}, v(zs,) = 7.

The projection s associated with an index sequence s is such that m;(mws(Dy X
-+ x Dy)) =Dy, forie{l,...,n}.

The contraction operator associated with a constraint A with index sequence s
maps a state D to a state D' in such a way that D) = m;(p N ws(D)) if z; is a
variable of A and D} = D; otherwise.

(5) An initial state, which is a state.

Ezample 8. To illustrate the definition, let us use it to formalize example 2.
The index sequence of the first constraint listed is s = [1,2,1]. The relation of
this constraint is p, which is a subset of R x Z x R. The contraction operator
of this constraint maps states D to D’ such that D} = m(p N 7s(D)), D} =
Wg(pm WS(D)), D3 = Dé, D4 = DZL, and D5 = Dg

For each constraint there has to be an efficiently computable contraction
operator.

3.2 Interval constraint systems

In this paper we consider interval constraint systems, which are constraint sys-
tems where the types are all equal to R and where the domains are intervals.
The constraints include x <y, x =y, x+y =2, Xy =z, 2" =y, sin(z) =y
and other trigonometric functions, exp(x) = y, and logz = y.

Definition 2 (Floating-point numbers, intervals). A floating-point number
is any element of F'U{—o0,+0o0}, there F is a finite set of reals that includes
0 and that is closed under negation. If x is a finite floating-point number, then
x~ (xT) is the greatest (least) floating-point number less (greater) than x. In
addition, —oco~™ = —o00, —cot = —M, +o0” = M, and +oot = 400 where M
18 the greatest finite floating-point number.

A floating-point interval is a closed connected set of reals, where the bounds,
in so far as they exist, are floating-point numbers. When we write “interval”
without qualification, we mean floating-point interval.

An interval that does not properly contain an interval is called canonical.

A box is a cartesian product of floating-point intervals.

Thus canonical intervals are non-empty sets of reals. They may have positive
width and they may have zero width. Examples are [a™,a], [a,a™], and [a, a],
where a is a finite float-point number. For any real, there is a unique smallest
canonical floating-point interval containing it.

3.3 Numerical problems

A useful collection of numerical problems can be expressed as interval constraint
systems. Consider the system of nonlinear inequalities in Figure 1. For simplicity
of notation we made all the relations inequalities, even though the system might
include f(z1,...,2,) < 0 as well as f(z1,...,2,) > 0, which can of course be
written more succinctly. If the fi,..., f,, are rational expressions where terms
also include exponential logarithmic and trigonometrical functions, then such a
system translates to an interval constraint system. Such a translation is neces-
sary because in general the contraction operator for fi(z1,...,z,) < 0 is not
efficiently computed. The translation of a system such as in Figure 1 with n and
m in the order of a dozen typically results in an interval constraint system with
hundreds of constraints in a similar number of variables.

fl(mla'r27' 7$n)§0
fa(zr, @2, 2n) <0
fm(xl,‘rQ, 7:rn)<0

Fig. 1. A system of non-linear inequalities. The left-hand sides are non-linear functions;
the right-hand sides are constants.

Definition 3. An expression comparison consists of two numerical expressions
connected by one of the relations <, =, or >. An expression comparison sys-
tem consists of a set X of real variables and a set of expression comparisons
containing no variables other than those in X.

In the conventional way, we consider expressions as trees. The leaf nodes are
constants or variables; the nonleaf nodes are the operation symbols.

Definition 4. The relation associated with a function f: R*¥ — R is

{<$0,...,$k> |m0:f(:1"17"'7$k)}7
fork=0,1,...

Definition 5. The constraint system C associated with an expression compar-
ison system £ depends on a one-one correspondence between the non-leaf nodes
of the trees in £ and a set of variables that is disjoint from the variables in £
and that is defined as follows.

Each of the variables in £ also occurs in C, where it is called a “primary
variable”. To each non-leaf node of a tree in £ there corresponds a variable in C
that does not occur in € and is called “auziliary variable”.

The constraints in C are determined as follows. For every non-leaf node n
(which is an operation f), with children n,...,ng, of a tree in &, there is an
atomic formula in C with variables xg,x1,...,x. The predicate in the atomic
formula denotes the relation associated with f. This formula is called a functional
atom in C. The variables x1,...,x) are the input variables of the atom; xq is
its output variable.

In addition there is in C, for every expression comparison with trees E1 and
E5 an atomic formula vy < v, v1 = vg, or v1 > ve according to the relation in
the expression comparison. This atomic formula is a relational atom in C.

3.4 Solving constraint systems

A constraint system is a problem to be solved: within the initial state, find values
for the variables that make the constraints true. This is typically not possible if
some of the types are the real numbers, as these are usually not representable
as floating-point numbers. Interval constraint systems are therefore solved in

the following weak sense. By applying contraction operators in conjunction with
the splitting of intervals, a set of states with canonical intervals as projections
is found with the property that their union contains any solutions that the
initial state may contain. For the example in Figure 1, this process may result
in intervals for f1,..., f;, with upper bounds less than cy,...,c,,. In that case
solutions are known to exist. Otherwise, the precision of the system’s arithmetic
does not allow the existence of a solution to be decided.

Propagation In the initial state, applying a contraction operator may result in
reducing the interval for one of the variables. If this is the case, then it is possi-
ble that application of the contraction operators of possibly existing other con-
straints in which this variable occurs will result in interval reductions, which, in
turn, can be exploited by applying contraction operators. This suggests a process
of propagation where contraction operators continue to be applied until none has
any effect. It may also happen that a contraction operator generates an empty
interval, which then proves that the interval constraint system is inconsistent,
that is, has no solution.

If the interval constraint system is not proved inconsistent during propaga-
tion, a stable state is reached. If in this stable state an interval for, say, variable
x is larger than desired, then the entire interval constraint system can be split
in two. Each has as initial state the stable state, except that in one interval con-
straint system, x has as domain the left half of the stable state’s interval, and in
the other, x has the right half. After this, propagation can make further progress
in reducing the domains in each of the newly created interval constraint systems,
which can then be split after stabilization. Or it may show inconsistency. In this
way propagation and splitting alternate until only interval constraint systems
remain with states consisting of canonical intervals.

There are several propagation algorithms [1]. They have in common that they
apply the contraction operators for the constraints in a fair sequence [14,1]. The
fairness property by itself is sufficient to ensure that the sequence converges to
the unique least common fixpoint of all contraction operators [1]. We review the
necessary definitions and results below.

It is remarkable that such a loose criterion as fairness is sufficient to imply
convergence to the correct limit. This property is exploited by using a propaga-
tion algorithm that is extremely simple. Examples of this can be found in [1].
We are interested in controlling the order in which contraction operators are
applied to a greater extent than is necessary for ensuring fairness. We use this
additional control to speed up convergence; we call this controlled propagation.

As we show presently, controlled propagation can be used to speed up con-
vergence by initially simulating a suitable numerical algorithm. First we need to
show that propagation can be controlled for a more basic purpose: the evaluation
of an expression according to interval arithmetic [2, 16].

Definition 6. A trace for a constraint system C with attributes as in Defini-
tion 1 has the following components:

(1) An index sequence t, which is an infinite sequence with elements in
{1,...,m}. (Note that m is the number of constraints in C.)

(2) A sequence of contraction operators of which the i-th element is ¢, de-
fined by the atom A, in C, fori=20,1,...

(3) A sequence U of boxzes of which the i-th element is the initial state of C
ift=0 and is 1,_,(U;—1) if i > 0.

As we are primarily interested in the sequence of boxes, we think of the
sequence of contraction operators as “activations” of the corresponding con-
straints. We think of the elements of ¢ as “selecting” a constraint to be activated.

Definition 7. A sequence is fair if every one of its elements occurs infinitely
many times.

The following proposition is based on the fact that the contraction operators
are monotone nonincreasing and idempotent and that there are finitely many
domains.

Proposition 1. See [14,1].

For any interval constraint system with box B as initial state we have:

(1) The sequence of bozes has a limit for every trace.

(2) The greatest lower bound of these limits is also a limit of a trace.

(8) All traces in which the index sequence is fair have the same limit. This limit
equals the greatest common fixpoint of 71, ..., Ty that is less than B.

(4) This fizpoint is uniquely determined by the constraint system. It is computed
by a suitable instance of Apt’s Generic Chaotic Iteration algorithm [1].

Definition 8. A constraint system is failed (non-failed) if its fizpoint is empty
(non-empty).

A failed constraint system has no solutions. A non-failed constraint system
may, but need not, have solutions.

Proposition 2. The fixpoint of a constraint system contains all its solutions.

This follows from the fact that the fixpoint is obtained by only applying con-
traction operators, each of which only removes values that cannot occur in any
solution.

Definition 9. A segment of a trace is functional if

(1) The sequence of atoms only contains functional atoms.

(2) For every atom, any input variable that is an auxiliary variable has oc-
curred as output variable earlier in the segment.

(8) No atom occurs more than once.

The following proposition shows that a trace of a constraint system can
simulate the evaluation of an expression.

10

Proposition 3. Let C be an interval constraint system with attributes as in Def-
inition 1 that is associated with an expression-comparison system £ containing
an expression E. Let box B be the initial state of C such that all its projections
corresponding to auziliary variables are [—oo, +00]. Let s be the sequence of oc-
currences of variables in E. Let x; be the variable in C that corresponds to the
root of E. Let T be a functional initial segment of a trace.

The i-th projection of the last of the sequence-of-boxes of T is the same
interval as the one obtained when E is evaluated in interval arithmetic with
75, (B) as the interval substituted for x5, in E, for all j € {1,...,]s|}.

In this paper we are interested in exploiting the fairness property by taking
a sequence of contraction operators that mimics a conventional numerical algo-
rithm and prefixing this sequence in front of a fair, but otherwise uncontrolled,
propagation. We describe examples of this later. These are based on a theorem
described next.

Proposition 4. Let T be a fair trace of an interval constraint system with con-
straints Aq,...,A,,. Let T' be the result of prefizing to T a finite sequence of
elements of {1,...,m}. Then T' is a fair trace.

As T is fair, each of {1,...,m} occurs infinitely many times in 7. Adding
any of these does not change this property.

4 Linear Algebraic Equations

Let us consider the problem of solving for = a system Ax = b, with A an n xn
matrix, x and b column n-vectors.

In this section we describe an algorithm in interval constraints that has the
correctness property of constraint processing, yet is speeded up by the use of
a modified version of Gaussian elimination. The description is structured into
the following sequence of algorithms: LAE, Gaussian Elimination, LAFE;, and
LAE,.

Algorithm LAEy The first step of the algorithm is to translate Az = b to
an interval constraint system. Not only the variables in the sense of numerical
analysis (the components of) become interval constraint variables, but also all
coeflicients of A and all components of b. The difference between these categories
is that the components of x are associated with the interval [—oo, +00], whereas
the others are associated with the canonical intervals containing the numerical
value given in the statement of the problem.

After this step, the algorithm performs propagation steps alternating with
splitting.

In principle, the splitting can be continued until boxes are as small as the
precision of the hardware allows. Let us say that splitting has continued to the
canonical level.

11

When propagation and splitting have continued as far as possible, all remain-
ing boxes are canonical and have the property that they cannot be shown not to
contain a solution within the precision of the machine. It seems plausible that
no more information about the solution can be obtained by any algorithm, using
the same basic hardware operations, than is obtained by LAEj.

Gaussian Elimination (GE) Let us first briefly review the Gaussian Elimination
algorithm for this problem. The steps of the algorithm derive from Az = b an
equivalent system Tz = b’ where T has upper-triangular form. This latter system
is then trivially solved by back substitution: it directly gives the value of z,, as
b, /Ty n; this value is then substituted into the (n —1)-th row; both x,, and x,,—1
are then substituted in the next row above, and so on until all components of x
are known.

In this simple form, the algorithm works in the most favourable situations.
Less favourable situations can be rescued by pivoting: interchanges of rows and
columns to avoid division by small numbers. When the matrix A is close to being
singular, no pivoting strategy helps.

Gaussian Elimination can be tested by LAFE,: we check whether the x as
found by GE is contained in any of the boxes remaining after completion of
LAFy. It usually is not, though often there will be one close by. This is the
effect of rounding errors in GE.

Algorithm LAFE; This is an algorithm in interval arithmetic. It follows the same
steps as GE, except that every arithmetical operation is performed in interval
arithmetic. As a result, all coefficients become intervals. The coefficients of Az =
b are canonical intervals. Those of Tz = I’ are in general wider, and may become
arbitrarily wide for sufficiently poorly conditioned A. The result is a box for x
that contains the solution, if any.

Algorithm LAE; This is an algorithm on an interval constraint system. In the
first stage, the same interval constraint system is created from Ax = b as is
done in LAEy. Next, the equations of Tx = b’ in LAFE, are added to the in-
terval constraint system as redundant constraints. The resulting system is then
subjected to controlled propagation, where the initial part of the sequence of
constraint contractions simulates the back substitution of GE. In cases where
GE works well, the box for x is small at the end of this stage. Propagation is
then completed to the limit.

If A is ill-conditioned, or if LAF; does not use an adequate pivoting strategy,
then the intervals at end of back substitution are wide. This will always be so
for systems where GE fails with every pivoting strategy. In such cases LAF;
gives an improvement by at least bounding a possibly existing solution. LAF,
improves in such a situation by reducing those intervals. Though it may be too
time-consuming to continue all the way to canonical intervals, any time available
can be used by LAFE5 to improve the result that LAFE; would give.

12

5 Nonlinear equations

For the sake of simplicity, we consider a single nonlinear equation in a single
variable.

Let us try to repeat the success we had with Gaussian elimination and fol-
low the same sequence of algorithms: raw interval constraints, the conventional
numerical algorithm, the translation of same to interval arithmetic, and finally
the simulation of the previous algorithm by controlled propagation prefixed to
the raw interval constraints algorithm.

Algorithm N LEq Translate nonlinear equation to interval constraint system in
the same way as was done for a system of linear equations: each constant is trans-
lated to a constraint system variable with a canonical interval and the variable
that is to be solved for to a constraint system variable with interval [—oo, +c0].
The resulting interval constraint system is then subject to search consisting of
alternating propagation and splitting. This is correct, gets all information avail-
able, but is very inefficient.

Newton’s Algorithm In Gaussian elimination, each step derives a logical con-
sequence of the current system of equations. This is also possible with a non-
linear equation, but this does not lead to an equation that can be handled in
conventional numerical analysis. What is done instead is the derivation of the
linearization of f at the starting point. This linearization, being linear, is then
easily solved. As the linearization is not a logical consequence, and is in general
false, the result of solving the linearization is in general not a solution. However,
if the linearization takes place sufficiently close to the solution, then the result
of solving the linearization is closer to the solution and is made the new starting
point. The process is repeated.

Algorithm NLE; In Gaussian elimination, the soundness of the elimination step
made a straight translation to interval arithmetic possible. The lack of soundness
makes such a translation pointless in this case. Instead, Moore [9] derived a
sound version of the Newton step in terms of interval arithmetic. This leads to
an iterative process that has a superficial resemblance to conventional Newton.
It achieves something that is not possible in conventional numerical analysis: to
find enclosures for all solutions.

Algorithm NLE5 The analogy with algorithm LAFs suggests that NLFE; be
simulated with controlled propagation as a prefix to the standard chaotic prop-
agation. However, principle of pruning by redundant constraints requires adding
redundant constraints to the interval constraint system in N LFEy. As the interval
Newton step does not seem to have an interpretation as a logical consequence
of the equation, it cannot play the role of a redundant constraint.

Such a redundant constraint has been tried in [15]. It is the first order version
of Taylor’s theorem:

f(@) = flao) + (z = z0) f(£) (1)

13

where
(w0 <€ <a)V (x < € < ap). (2)

This was added as a redundant constraint with xy equal to the midpoint of
the interval for z. Propagation was then repeated, yielding a new interval for z,
with a new midpoint and a new redundant constraint. This process was found to
have quadratic convergence on a few examples with simple zeros. An analysis of
the conditions under which this behaviour is found does not seem to have been
made.

6 Conclusions

Classical algorithms of conventional numerical analysis can be used to speed up
solving by interval constraint systems.

The fact that any fair sequence converges to the correct limit for the sets
associated with the variables leaves a vast amount of freedom in choosing the
order in which contraction operators can be applied.

In [2, 16] it has been shown that the evaluation of complex expressions can be
simulated in this way by propagation. In this paper we describe how constraint
propagation can also simulate the Gaussian elimination algorithm.

Another way in which numerical analysis can speed up solving by interval
constraints is to use its algorithms as suggestions for useful redundant constraints
to add. In the case of Gaussian elimination, exactly the same derived equation
could be added redundantly to the interval constraint system. In the case of
Newton’s method one cannot add the linearized version of the equation, but
instead one can add the instance of Taylor’s that serves as basis of Newton’s
algorithm.

7 Acknowledgments

The ideas in this paper evolved from a conversation with Bill Older. Thanks to
the referees for their suggestions. We acknowledge generous support from the
Natural Science and Engineering Research Council NSERC.

References

1. K.R. Apt. The essence of constraint propagation. Theoretical Computer Science,
221(1-2):179-210, 1999.

2. Frédéric Benhamou, Frédéric Goualard, Laurent Granvilliers, and Jean-Francois
Puget. Revising hull and box consistency. In Proceedings of the 16th International
Conference on Logic Programming, pages 230-244. MIT Press, 1999.

3. Frédéric Benhamou and William J. Older. Applying interval arithmetic to real,
integer, and Boolean constraints. Journal of Logic Programming, 32:1-24, 1997.

4. Alan Borning. ThingLab — a constraint-oriented simulation laboratory. Technical
Report SSL-79-3, Xerox Palo Alto Research Center, 1979.

14

10.

11.

12.

13.

14.

15.

16.

. M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf, and F. Berthier.

The constraint programming language CHIP. In Proc. Int. Conf. on Fifth Gener-
ation Computer Systems, 1988.

Eldon Hansen. Global Optimization Using Interval Analysis. Marcel Dekker, 1992.
J. Hooker. Logic-Based Methods for Optimization - Combining Optimization and
Constraint Satisfaction. Wiley-Interscience series in discrete mathematics and op-
timization. John Wiley and Sons, 2000.

R. Baker Kearfott. Rigorous Global Search: Continuous Problems. Kluwer Aca-
demic Publishers, 1996. Nonconvex Optimization and Its Applications.

Ramon E. Moore. Interval Analysis. Prentice-Hall, 1966.

Arnold Neumaier. Interval Methods for Systems of Equations. Cambridge Univer-
sity Press, 1990.

R.V. Southwell. Relazation Methods in Engineering. Oxford University Press,
1940.

Gerald Jay Sussman and Guy Lewis Steele Jr. Constraints — a language for
expressing almost-hierarchical descriptions. Al Journal, 14:1-39, 1980.

I. Sutherland. Sketchpad: a Man-Machine Graphical Communication System. PhD
thesis, Dept. of Electrical Engineering, MIT, 1963.

M.H. van Emden. Value constraints in the CLP Scheme. Constraints, 2:163-183,
1997.

M.H. van Emden. Algorithmic power from declarative use of redundant constraints.
Constraints, pages 363-381, 1999.

M.H. van Emden. Computing functional and relational box consistency by struc-
tured propagation in atomic constraint systems. In Proc. 6th Annual Workshop of
the ERCIM Working Group on Constraints; downloadable from CoRR, 2001.

