
Using the duality principle to improve lower bounds for
the global minimum in nonconvex optimization

M.H. van Emden

Department of Computer Science,
University of Victoria, Victoria, Canada

vanemden@cs.uvic.ca
http://www.cs.uvic.ca/˜vanemden/

1 Introduction

In 2001 Sergey Shary published “A Surprising Approach in Interval Global Optimiza-
tion” [13], where he introduced

. . . a new class of global optimization methods, calledgraph subdivision meth-
ods, that are based on the simultaneous adaptive subdivision of both the func-
tion’s domain of definition and the range of values.

Shary considers the method “to turn out better than the traditional techniques from [11,
6, 8] in either the computational efficacy and the quality of the results it produces”.

Although Shary presents it as an isolated phenomenon, it turns out that the graph
subdivision method is intimately intertwined with a variety of methods in optimization.
It is the purpose of this paper to present a unified framework in which the graph sub-
division method can be appreciated. Foremost among these is the venerable principle
of considering not only the primal formulation of the optimization problem, but also its
dual. Hence the title.

2 Types of optimization problems considered here

We consider the minimization off , a real-valuedobjective functionof real-valued ar-
gumentsx0, . . . , xn−1, calleddecision variables:

Minimize f(x0, . . . , xn−1) subject to〈x0, . . . , xn−1〉 ∈ S. (1)

When〈x0, . . . , xn−1〉 ∈ S, we say that〈x0, . . . , xn−1〉 is feasible. S is often de-
scribed by means ofconstraints.

These can be equality constraints, as in:

h0(x0, . . . , xn−1) = 0, . . . , hp−1(x0, . . . , xn−1) = 0 (2)

They can also include inequality constraints, as in:

g0(x0, . . . , xn−1) ≤ 0, . . . , gq−1(x0, . . . , xn−1) ≤ 0 (3)

2

The standard formulation also includes theset constraint:

〈x0, . . . , xn−1〉 ∈ Ω (4)

This includes possibly existing constraints that are not conveniently expressed as equal-
ity or inequality constraints; for example, that some or all of the decision variables have
to be integer. Also, it is common for the decision vector to be constrained to a box,
which is tedious to express in inequality constraints.

If {f(x0, . . . , xn−1) | 〈x0, . . . , xn−1〉 ∈ S} has a lower bound, then it has a greatest
lower bound; call itm, theglobal minimum. Computationally, the optimization problem
is to find an upper and a lower bound for the global minimum and to find a decision
vector where the objective function attains a value close tom.

Optimization problems as described above may have several properties that facili-
tate solution by conventional methods: continuity of the objective function, absence of
constraints, linearity of the objective function or the constraints, constraints in the form
of equalities rather than inequalities, availability of partial derivatives of the objective
function or constraints. Above all, the presence of only a single local minimum, or even
convexity of the objective function, facilitates solution so much that large numbers of
decision variables can be handled in the absence of constraints.

An important special case islinear programming, where the objective function is
linear, where there are no equality constraints, and where the inequality constraints are
also linear. Such optimization problems are efficiently solved by the Simplex algorithm.

We are primarily interested in methods that do not require any of these facilitat-
ing properties. In particular, we allow an unknown and possibly large number of local
minima and we do not require the availability of derivatives. However, we do assume
the following restrictive property: that the objective function and possibly existing con-
straints are given in the form ofexpressionsthat can be evaluated in interval arithmetic.
This rules out minimization of objective functions that are the output of some “black
box”. For example, this would be the case if the objective function values are the result
of a measurement.

Linear programming itself has an important special case, where variables are con-
strained to be integer. Then we speak ofinteger linear programming(if all variables
are integer) ormixed integer linear programming(where some variables are integer and
some need not be).

2.1 Intervals

As intervals play an important role in the optimization methods considered in this paper,
we give a brief recapitulation of the most important interval concepts.

A real interval is a closed, connected set of reals. Accordingly, the empty set and
the set of all reals are real intervals. The remaining real intervals can be classified as
follows. Leta andb, with a ≤ b, be reals. The bounded real intervals are{x ∈ R | a ≤
x ∧ x ≤ b}. These are written as[a, b]. Real intervals that are only bounded on the left
have the form{x ∈ R | a ≤ x} and are written as[a,+∞]. Real intervals that are only
bounded on the right have the form{x ∈ R | x ≤ b} and are written as[−∞, b]. When
we write[−∞,+∞], we mean the set of all reals. The use of∞ in these notations does
not of course imply that−∞ or +∞ are claimed to be reals.

3

A floating-point numberis any element ofF ∪ {−∞,+∞}, whereF is a finite set
of reals. Afloating-point intervalis a real interval, where the bounds, in so far as they
exist, are floating-point numbers. Acanonical intervalis a non-empty floating-point
interval that does not properly contain a floating-point interval.

For every non-empty intervalX, lb(X) andrb(X) denote the left and right bound of
X respectively. For an unboundedX, lb(X) or rb(X) is defined as−∞ or +∞. Thus,
X = [lb(X), rb(X)] is a convenient notation for all non-empty intervals, bounded or
not.

A box is a cartesian product of intervals.

3 Determining upper and lower bounds

If the partial derivatives of the objective function are available and if constraints are
absent, then there are conventional methods that efficiently find alocal minimum. One
then finds as many of these as possible and assumes that the least among the ones that
are found is the global minimum. This is not in general the case, so we only have an
upper boundfor the global minimum.

For an upper bound of the global minimum one needs to find a feasible decision
vector or one needs to prove the existence of one in the region of interest. This of
course trivial in the absence of constraints; constraints can be such that it is difficult
to obtain an upper bound. For example, constraints can take the form of nonlinear in-
equalities. Solving these is no less hard than the optimization problem. In fact, then the
optimization problem might as well be stated as the finding of the best solution to a
set of nonlinear inequalities, where “best” is defined by an objective function without
special features that facilitate solution.

In the absence of constraints, finding an upper bound for the global minimum
presents no difficulty. However, even in this simple case, conventional methods do not
in general have a method for obtaining a lower bound. The approach of finding many
local minima and stop with the hope of having found a low enough one breaks down in
many problems. Some problems have astronomical numbers of local minima. In others
the concept of local minimum even breaks down, as it does in integer linear program-
ming.

Some special cases help in finding lower bounds. For example, if the objective func-
tion satisfies a Lipschitz condition; see [10]. In integer linear programming one can
relax the problem by dropping the integer constraint. The remaining linear program-
ming problem can be solved by the Simplex algorithm. The resulting minimum is then
a lower bound for the global minimum. Both of these methods only yield useful lower
bounds when the decision vector is confined to a small region. Hence it is necessary
to subdivide the feasible region into many subregions. These regions are obtained by
splitting on one of then decision variables. Hence the number of these subregions is
exponential inn.

It is of crucial importance to improve the upper and lower bounds as much as possi-
ble to postpone the inevitable combinatorial explosion as long as possible. In this paper
we investigate Shary’s proposal for improving the lower bounds.

4

4 Constraint Programming

The equality constraints (2) or inequality constraints (3) are difficult to solve if they
are not linear. This difficulty has motivated interest in constraint programming. For ex-
ample, in [7] it is shown that mixtures of nonlinear equalities and inequalities can be
solved by interval constraints. This method has the property of bounding all solutions
and, usually, isolating them. If the required derivatives are available then the necessary
condition that they be zero at local minima can be added as constraints to the constraint
satisfaction problem. By performing a branch-and-bound search over the typically many
solutions of such a constraint satisfaction problem, these authors obtain impressive re-
sults in nonlinearly constrained nonconvex global optimization.

In this paper we address the situation where the objective function does not have the
required derivatives or where these are not used for some other reason. In this case it is
also advantageous for the finding of lower bounds of the objective function to cast the
optimization problem stated in (1) in the form of a constraint satisfaction problem. This
we treat in section 6. First, we start by briefly reviewing the main features of constraint
programming.

Suppose we have information about variables in the form of constraints on the val-
ues these variables can assume. At any stage in the solution of the constraint satisfaction
problem there is associated with each variable adomain, which is a set of values that the
variable can have. In constraint programming one uses various methods to reduce the
domains of the variables on the basis of the given constraints. After sufficient reduction,
the domains are small enough to be a solution or to be used in lieu of a solution.

At first sight the equality and inequality constraints in (2) and (3) look like a con-
straint satisfaction problem. This is theoretically correct, as they completely determine
the set of feasible vectors. However, they contain possibly deeply nested numerical ex-
pressions with possibly many variables. Such expressions are not suited for direct use
in constraint programming.

The domains can only be reduced by removing values that do not satisfy one of the
constraints, given that the other variables in that constraint are limited to their associ-
ated domains. The operation of removing such inconsistent values is thedomain re-
duction operation(DRO) associated with that constraint. These operations are quickly
computed, typically requiring at most a few dozen processor cycles. Such operations
are only available for a small class of constraints that we callprimitive. By introducing
auxiliary variables, one can transform an equality or inequality with a nested expression
such as (2) or (3) to a conjunction of primitive constraints.

Among the primitive constraints an important subclass consists of those that are the
relational counterparts of the arithmetic operations, for example the ternary constraints
x + y = z (corresponding to addition and subtraction) andx ∗ y = z (corresponding to
multiplication and division).

Thus it is no loss of generality to consider constraint satisfaction problems that are
conjunctions of primitive constraints.

Definition 1. A constraint satisfaction problem (CSP)consists of

– A non-empty setV of variables.

5

– A domain vectorthat associates each variable with a domain. Each domain is a set
of which the elements can serve as value for the associated variable.

– A set of constraints, which are atomic formulas containing no variables other than
those inV.

A solution is a choice of a domain element for each variable that makes all con-
straints true.

The constraint programming paradigm is very general. It applies to domains as dif-
ferent as booleans, integers, ground terms of logic, finite symbolic values, and reals. In
this paper we considerinterval CSPs, which are CSPs where there is only one type and
it is equal to the setR of real numbers. In such CSPs domains are restricted to floating-
point intervals. We regard the integers as a subset of the real numbers. This corresponds
to the possibility of placing a constraint on a real variable that it be integer. In this way,
this framework also includes mixed-integer problems.

Arc consistency For each relation symbol that occurs in a CSP, there is a DRO. A
domain vector of a CSP isarc consistentif none of the DROs of a constraint in the CSP
causes an interval in the domain vector to become smaller. The arc consistent state is
reached by applying the constraints in a “fair” order, that is, in such a way that every
one of them is applied an infinite number of times.

In practice, we are restricted to domains that are representable in a computer. As
there are only a finite number of these, there is a finite initial subsequence of every
fair sequence that ends in an arc consistent domain vector. Bypropagationwe mean
an algorithm that applies DROs a finite number of times in such a way that the arc
consistent domain vector is reached.

We say that propagation “terminates in failure” when the resulting domain vector
has an empty interval. This special case is of interest as it proves that the original domain
vector contains no solution. The nonfailure outcome does not prove the existence of any
solution.

Box consistencyWhen subdividing the space of decision vectors to obtain a close lower
bound for the global minimum, it often pays to spend additional effort to improve the in-
tervals that can be obtained by propagation. This is possible with a relaxation algorithm
that can further reduce an arc-consistent domain vector to a box-consistent domain vec-
tor [1, 7].

Box consistency is based on an operation on one interval that is called “box narrow-
ing” [7]. By repeating the application of box narrowing on sufficiently many intervals
sufficiently many times, no further interval reductions result. Then the domain vector
has reached thebox-consistentstate.

Functional box narrowingWe consider two types of box narrowing: functional and
relational. We describe them for constraint satisfaction problems that derive from con-
straints such as those in (3), though they are not limited in this way.

Let g be a generic member of{g0, . . . , gq−1}. Let E be one of the expressions that
compute the functiong. We writeE(a0, . . . , an−1) for the expression resulting from
substitutinga0, . . . , an−1 for x0, . . . , xn−1 in E. Herea0, . . . , an−1 can be reals or
they can be intervals.

6

Let evaldenote the result of evaluating the expression to which it is applied. If reals
have been substituted for the variables, then the evaluation is in real arithmetic. For
example, for realsa0, . . . , an−1 we haveeval(E(a0, . . . , an−1)) = g(a0, . . . , an−1).

One can also substitute intervals for the variables inE. In that case, the evaluation
is in interval arithmetic. Suppose thatX0, . . . , Xn−1 are intervals. Then we have

eval(E(X0, . . . , Xn−1)) ⊃ {g(x0, . . . , xn−1) | x0 ∈ X0, . . . , xn−1 ∈ Xn−1}.

In [7], box consistency is computed by a relaxation algorithm implemented in in-
terval arithmetic. The algorithm takes as input certain intervalsX0, . . . , Xn−1 for the
variablesx0, . . . , xn−1. We call the algorithm in [7] arelaxation algorithmbecause it
improves the intervals for the variables one at a time while keeping the intervals for
all the other variables fixed. This is similar to the relaxation algorithms of numerical
analysis.

For simplicity of notation, but without loss of generality, let us assume that the
interval forx0 is to be improved on the basis of the fixed intervalsX1, . . . , Xn−1 for
the variablesx1, . . . , xn−1. This is done by means of the functiongX1,...,Xn−1 that maps
an interval to an interval and is defined so that for all intervalsX

gX1,...,Xn−1(X) = eval(E(X, X1, . . . , Xn−1)).

To improve the intervalX0 = [lb(X0), rb(X0)] for x0, suppose that for somea
such thata ∈ rb(X0) we have that

lb(gX1,...,Xn−1([a, rb(X0)])) > 0. (5)

In that case the interval forx0 can be improved fromX0 to [lb(X0), a] if lb(X0) ≤
a. If, on the other hand,lb(X0) > a, then it has been shown that no solution of
g(x0, . . . , xn−1) ≤ 0 exists forx0 ∈ X0, . . . , xn−1 ∈ Xn−1.

real function BRB1(a, b) {
if (lb(gX1,...,Xn−1([a, b])) > 0) returna;
if ([a, b] is canonical) returnb;
//[a, b] not canonical, so has midpoint
m := midpoint of[a, b]; // a < m < b
m′ := BRB1(m, b);
if (m′ > m) returnm′;
// rightbound was improved all the way down tom
// so maybem can be improved some more
return BRB1(a, m);

}

Fig. 1. A definition of function to improve the right bound of[a, b] by “squashing” or “box-
narrowing”, as they are respectively called in [3] and [7]. BRB stands for “better right bound”.
If applied to both bounds, then the result is functional box consistency. If BRB1(a, b) returns an
interval witha as left bound, then there is no solution in[a, b].

7

Figure 1 shows a bisection algorithm that can be used to find the least floating-point
a for which (5) holds, for fixed intervalsX1, . . . , Xn−1. A similar bisection is used
to improve the lower bound ofX0 usingg and the fixed intervalsX1, . . . , Xn−1. In
general, repeating this process with the other arguments and with the other functions
among{g1, . . . , gq−1} causes reductions ofX1, . . . , Xn−1 and further reductions of
X0.

If the interval becomes empty, it is shown that no solution exists within the original
domain vectorX0, . . . , Xn−1.

Relational box narrowingIn (5) the criterion that decides whethera is a possible and
better upper bound for the interval forx0 depends on interval arithmetic for evaluating
the left-hand side. This idea was used in theabsolve predicate of the interval con-
straint programming language BNR Prolog [2]. In [15] it is compared with functional
box consistency.

Consider the interval CSP containing as constraints

g(x0, . . . , xn−1) ≤ 0
x0 > a (6)

x0 ∈ X0, x1 ∈ X1, . . . , xn−1 ∈ Xn−1

If propagation on this CSP fails, we havea as improved upper bound. Relational
box narrowing is a bisection algorithm for finding the best sucha.

The interval CSP (6) can be seen as adding the constraintx0 > a to the following
interval CSP denoted byC.

g(x0, . . . , xn−1) ≤ 0
x0 ∈ X0, x1 ∈ X1, . . . , xn−1 ∈ Xn−1

The corresponding bisection algorithm is shown in Figure 2.

real function BRB2(a, b) {
apply propagation onC with x0 > a;
if (result of propagation is failure) returna;
if ([a, b] is canonical) returnb;
m := midpoint of[a, b];
m′ := BRB2(m, b);
if (m′ > m) returnm′;
return BRB2(a, m);

}

Fig. 2. A definition of a function to improve the right bound of[a, b] using relational box consis-
tency. If BRB2(a, b) returns an interval witha as left bound, then there is no solution in[a, b].

In both functional and relational box consistency it is true that, if an interval be-
comes empty, the algorithm terminates with failure. As with propagation, the failure

8

outcome is a proof that no solution is contained in the original domain vector. Nonfail-
ure does not imply the existence of any solution.

Partial box consistencyThe system (3) is representative of what might be solved by box
consistency. In general, the method results in smaller intervals than propagation. The
required effort is greater: each box narrowing uses one of the functionsg0, . . . , gq−1

to reduce the interval for one of the variables. To achieve box consistency, one has
to iterate box-narrowing over the functions as well as over the variables. And box-
narrowing itself is a bisection iteration.

There are situations where some of the variables or functions are more important
than the others. In that case one can achievepartial box consistencyby iterating the box
narrowing operation only over those functions or variables.

5 The Duality Principle in optimization

We have seen a fundamental asymmetry in constraint programming. This asymmetry
is the same independently of whether propagation, functional box consistency or rela-
tional box consistency is used:failure proves absence of solutions; nonfailure does not
prove the existence of any solution.This has a consequence for what is the best way to
solve an optimization problem by means of constraint programming.

In optimization it is part of standard methodology to consider not only the direct
form (1) of the optimization problem, but to use the Duality Principle to state both the
primal and dual formulation. There are many examples where the dual form leads to a
better algorithm.

Given an objective functionf and a setS of feasible vectorsx, a typical statement
of the Duality Principle is the equivalence of the following problems:

Primal Minimize f(x) subject tox ∈ S.
Dual Maximizez such thatx ∈ S impliesf(x) > z.

As the primal problem is to find a vector ofn components, a search algorithm is
likely to be exponential inn. The dual problem is to find a single realz. Of course it
may be exponential to determine whether for any particularz = z′ it is the case that
x ∈ S impliesf(x) > z′. It turns out that this can often be determined by failure of an
arc-consistency or of a box-narrowing algorithm, which in practice appears to have a
complexity that only increases moderately withn. It is therefore promising to approach
optimization via the dual problem.

To be able to use constraint propagation or relational box consistency, we need
to translate the optimization problem to a constraint satisfaction problem, which is a
formula of logic. Although it is only the dual problem that appears promising, we might
as well translate both to logic:

Primal Find the leasty such that∃x.[f(x) = y ∧ x ∈ S].
Dual Find the greatestz such that∀x.[x ∈ S → f(x) > z].

9

Merely re-expressing the primal problem in logic gives it the same one-dimensional
appearance as the dual one. It was therefore naive to rely on such appearances to prefer
the dual formulation. However, we still have to translate to a CSP. It turns out that the
dual problem translates to a CSP on which arc consistency or relational box consistency
can be used. This does not appear to be the case for the primal problem. This is not
surprising, because of the difference in quantifiers between the problems1.

By applying well-known equivalences to the dual problem, we obtain:

Primal

Find the leasty such that∃x.[f(x) = y ∧ x ∈ S].

Dual
Find the greatestz such that¬∃x.[f(x) ≤ z ∧ x ∈ S]. (7)

From the point of view of constraint programming there is a crucial difference be-
tween the two problems. According to the asymmetry noted in section 4, constraint
propagation with real-valued variables can never by itself prove the existence of a solu-
tion. It can, however, prove that no solution exists. For that reason, the dual formulation
is better suited to constraint programming. We now address the question: how does one
find the greatestz specified in (7)?

6 Optimization expressed in constraint programming

The reason for preferring the dual formulation is that the negation can be inferred from
the failure outcome of an arc-consistency or box-consistency algorithm. The existential
quantification is implied in the CSP. Therefore the CSP to be manipulated for global
optimization should be equivalent to what remains after removing the negation and the
existential quantification:f(x) ≤ z ∧ x ∈ S. It is encouraging that this is already a
conjunction. We need to ensure that the conjuncts themselves also translate to conjunc-
tions.

Let us begin with the conjunctf(x) ≤ z. Heref denotes the mathematical concept
of function, however defined. To express this as a CSP, we need a definition off in the
form of an arithmetic expressionE. However,E is not an atomic formula. To complete
the translation off(x) ≤ z to a conjunct in a CSP, we add the variablef to the vari-
ablesx0, . . . , xn−1 that occur inE and in the equality and inequality constraints. This
additional variable represents the value of the objective function. Thus we get

f = E ∧ f ≤ z ∧ x ∈ S (8)

as the formula specifying the CSP.
Let us now translate the conjunctx ∈ S to a CSP. We assume that the setS is

specified as the set of solutions to a conjunction of equality constraints (2) or inequality
constraints (3). This conjunction then replaces thex ∈ S in (8).

1 The concept of duality also occurs in logic, where∃ and∀ are mutually dual.

10

We now have a CSP in the variablesx0, . . . , xn−1, f . From the point of view
of constraint programming all these variables have the same status. In optimization,
the conventional view sees constraints as limiting the values that can be assumed by
x0, . . . , xn−1. But when viewed as a CSP, the special status off disappears. This is the
insight that motivated the paper [13] by Shary. It may have been the contrast with the
conventional view that prompted the “surprising” in his title.

Shary did not refer to constraint programming. He removed the special status off
by considering the “graph”

{〈x0, . . . , xn−1, z〉 | f(x0, . . . , xn−1) = z}

rather than the functionf . He findsz as a lower bound for the global minimum by
showing somehow that the equationf(x0, . . . , xn−1) = z has no solution. This depends
of course on continuity off . We use instead the inconsistency off(x0, . . . , xn−1) ≤ z
because it is the formulation of the optimization problem itself, provided one uses the
dual version. In this general formulation, continuity off is not assumed. Shary did
not elaborate on the crucial step of showing inconsistency of equations of the form
f(x0, . . . , xn−1) = z. He did refer to the possibility of using the interval constraint
programming system Unicalc [12].

Using box narrowingThe dual form (7) of the optimization problem suggests an iter-
ation to determine the greatestz such that the CSP in (7) has no solution. But that is
exactly the same mechanism used by box narrowing to improve the lower bound forf
in the CSPf = E ∧ x ∈ S.

However, it must be realized that box narrowing findsz1, the greatestz for which
(7) fails. This is notz0, the greatestz for which (7) has no solution. The good news
is thatz1 ≤ z0. The bad news is that there can be quite a gap between the two. Typi-
cally, the smaller the domains forx0, . . . , xn−1, the smaller the gap. Although the use
of box-narrowing was introduced to decrease the need to subdivide the intervals for
x0, . . . , xn−1, this cannot be avoided altogether. Surprising and promising as the new
technique is, it still has the humble status as one of the ways in which the venerable
branch-and-bound method can be improved.

7 Branch-and-Bound

All methods that have gone beyond conventional continuous optimization in providing
a lower bound for the global minimum use the branch-and-bound idea. These include
[11, 6, 8] as well as Shary’s graph-subdivision method and methods based on the use of
a Lipschitz condition [10].

The many forms of branch-and-bound algorithms have in common that they depend
on only a few parameters. By instantiating each of these, one obtains a branch-and-
bound algorithm for a specific situation. The parameters are:

– Bisection methodThe feasible space of an optimization problem can be bisected
unless it is “admissible”; see below.

11

– Admissibility criterionThe feasible space consists of one decision vector or is small
enough to be accepted in lieu of a solution.

– Test methodAn efficient algorithm that can have two outcomes of which one is
failure. This outcome implies that no feasible decision vector exists. In case of
nonfailure, there may be any number of solutions, including zero.

– Lower-bound methodFor every set of constraints there is a way to establish a num-
berL such that there is no solution for which the objective function has a value less
thanL.

– Upper-bound methodFor every set of constraints there is a way to establish a num-
ber U such that there is no solution for which the objective function has a value
greater thanU . Such a bound is usually provided by the objective function value at
a feasible point. It may not be possible to determine such a point. In that case the
upper bound method yields+∞.

As a result of repeated splitting, many optimization problems are generated, each
with their own upper and lower bounds. If the lower bound in one problem exceeds
the upper bound in another, then the former problem can be discarded from the list of
problems under consideration. The success of branch-and-bound depends on making
the lower bounds sharp enough to cause sufficiently many subproblems to be discarded.

Integer linear programming is an example of a branch-and-bound method. Lower
bounds are obtained by dropping the integrality constraint and applying the Simplex
algorithm to the remaining linear programming problem. If this yields an all-integer
solution, the admissibility criterion is fulfilled. A feasible point is found, and this yields
an upper bound. If the solution is not all integers, then a non-integer valueaj is found for
a variablexj and a split is effected by adding either the additional constraintxj ≤ bajc
or xj ≥ daje.

We mention integer linear programming because it gave rise to the first branch-
and-bound algorithm. The extensive experience over several decades has shown that
the quality of lower bounds is crucial. Much effort has gone into devising cutting-plane
techniques that effect small improvements in the lower bound. The seemingly trivial
difference in lower bound is often needed to reduce the search space sufficiently to
make the problem solvable in practice.

In nonlinear optimization problems, interval arithmetic has provided a way of pro-
viding lower bounds. This was done by the Moore-Skelboe algorithm [14, 9] and many
subsequent elaborations [11, 6, 8]. Here the parameters for branch-and-bound are as
follows. Bisection is the bisection of an interval that is not yet narrow enough. Admis-
sibility can either be the fact that the difference between the upper and lower bounds is
small enough or that all the intervals for the decision vector are small enough. The upper
bound is the upper bound of the interval for the objective function obtained at a feasible
point. This is of course problematic in constrained optimization problems. The lower
bound parameter is the lower bound of the interval obtained by interval arithmetic eval-
uation of an expression for the objective function. The weakness of these lower bounds
has motivated subsequent work on the use of constraint programming, including the
present paper.

Unicalc [12] has been credited by Shary [13] as using constraint programming for
improving lower bounds. Chen and van Emden [5, 4] implemented a branch-and-bound

12

algorithm based on the formulation (8) in the interval constraint programming language
BNR Prolog [2]. The routineabsolve was used to obtain a lower bound. Comparison
with the Moore-Skelboe algorithm confirmed the experience in integer linear program-
ming that improved lower bounds are often worth the additional expense by drastic
reductions in the search space.

8 Conclusions

While the crucial importance of lower bounds in branch-and-bound has long been
known, it is surprising that standard constraint programming techniques such as box-
narrowing have been neglected in the literature on nonlinear nonconvex global opti-
mization.

9 Acknowledgements

We have profited from discussions with Krzysztof Apt on branch-and-bound algo-
rithms. Luc Jaulin and the anonymous referees have provided helpful remarks on an
earlier draft. We acknowledge generous support by the University of Victoria, the Natu-
ral Science and Engineering Research Council NSERC, the Centrum voor Wiskunde en
Informatica CWI, and the Nederlandse Organisatie voor Wetenschappelijk Onderzoek
NWO.

References

1. F. Benhamou, D. McAllester, and P. Van Hentenryck. CLP(Intervals) revisited. InLogic
Programming: Proc. 1994 International Symposium, pages 124–138, 1994.

2. BNR. BNR Prolog user guide and reference manual. Version 3.1 for Macintosh, 1988.
3. Pascal Brisset, Hani El Sakkout, Thom Fruhwirth, Carmen Gervet, Warwick Harvey, Micha

Meier, Stefano Novello, Thierry Le Provost, Joachim Schimpf, Kish Shen, and Mark Wal-
lace. Eclipse constraint library manual. 2002.

4. H.M. Chen. Global Optimization Using Interval Constraints. PhD thesis, University of
Victoria, 1998.

5. H.M. Chen and M.H. van Emden. Global optimization in hypernarrowing. InSIAM Annual
Meeting, 1997.

6. Eldon Hansen.Global Optimization Using Interval Analysis. Marcel Dekker, 1992.
7. Pascal Van Hentenryck, Laurent Michel, and Yves Deville.Numerica: A Modeling Language

for Global Optimization. MIT Press, 1997.
8. R. Baker Kearfott.Rigorous Global Search: Continuous Problems. Kluwer Academic Pub-

lishers, 1996. Nonconvex Optimization and Its Applications.
9. R.E. Moore. On computing the range of values of a rational function of n variables over a

bounded region.Computing, 16:1–15, 1976.
10. J́anos Pint́er. Global Optimization in Action. Kluwer, 1996.
11. H. Ratschek and J. Rokne.New Computer Methods for Global Optimization. Ellis Hor-

wood/John Wiley, 1988.
12. Alexander L. Semenov. Solving optimization problems with help of the Unicalc solver. In

R. Baker Kearfott and Vladik Kreinovich, editors,Application of Interval Computations,
pages 211–224. Kluwer Academic Publishers, 1996.

13

13. Sergey P. Shary. A surprising approach in interval global optimization.Reliable Computing,
7:497–505, 2001.

14. S. Skelboe. Computation of rational interval functions.BIT, 14:87–95, 1974.
15. M.H. van Emden. Computing functional and relational box consistency by structured prop-

agation in atomic constraint systems. InProc. 6th Annual Workshop of the ERCIM Working
Group on Constraints; downloadable from CoRR, 2001.

