Principles of Constraint Programming By Krzysztof R. Apt. Cambridge University Press, Cam-
bridge, 2003. GBP 35.00. xii + 407 pp., hardcover. ISBN 0-521-82583-0.

Constraint Processing By Rina Dechter. Morgan Kaufmann Publishers, 2003. $ 65.95. xx + 481
pp., hardcover. ISBN 1-55860-890-7.

Of the most recent disciplines to arise in computer science, one is devoted to modelling with
constraints and to solving the resulting constraint satisfaction problems. Some authors call
it “constraint programming”, which I will avoid to prevent confusion with “programming” as
used in, say, “linear programming” or “object-oriented programming”. Other authors prefer
“constraint processing”, which I will avoid in favour of the more specific constraint satisfaction.

Constraint satisfaction started as part of artificial intelligence. In 1993 annual workshops
started, which became the CP (for “Constraint Processing”) series of conferences. Since 1996
Kluwer has published a journal named Constraints exclusively devoted to the subject. The blurb
for the journal lists as application domains artificial intelligence, discrete mathematics, neural
networks, operations research, design and configuration, graphics, visualization and interfaces,
hardware verification and software engineering, molecular biology, scheduling, planning, resource
allocation. Though it sounds like a blurb, it is a justified claim.

Early books on the subject [7, 8] were focused on constraint satisfaction as a basis for a
programming language. Tsang’s [13] is an exception: it is a pioneering precursor to the books
under review. It is fitting that they were published shortly after [13] went out of print.

Considering how constraint satisfaction arose in artificial intelligence, which is the conven-
tionally accepted misnomer of what is, in effect, the interdisciplinary and experimental branch
of computing, one might consider it to be marginal to the interests of STAM Review. As I hope
convince readers of this review, this is marginality of the beneficial kind. Accordingly, I include
some background, showing how constraint programming originated in numerical computation,
diverged from its origins, and seems to be settling down in a way that makes its relevance to
optimization easy to overlook.

Logically, optimality and feasibility are equally important in constrained optimization. But
to get anything done, one needs to concentrate on one or the other. In optimization, optimality is
put first. Constraints are incorporated in the objective function, whether by Lagrange multipliers
or by the use of penalty functions.

The opposite point of view regards the constraints as primary. As an exercise to learn to
see the world from the point of view of constraint satisfaction rather than of optimization, let
us consider an underdetermined system of equations. If the system were linear and algebraic,
then it is clear how to obtain a neat characterization of the set of solutions. In the presence
of transcendental functions no such characterization is available; one should be content with
a single solution. Which? If we select this single solution by a preference function, then we
have arrived at a constrained optimization problem with the preference function as objective
function. And of course, even with an underdetermined system of linear algebraic equations one
may prefer to select a single solution by means of a preference function. If this function is linear,
then we have arrived at a linear programming problem.

The two books under review do not seem to be connected to the numerical world of opti-
mization. To make such a connection, one has to consider a constraint satisfaction setting where
the variables do not necessarily range over the reals and where the relations in the constraints
are not necessarily equality or inequality. Typically, variables range over small finite sets; often
variables are boolean. The relations are often not binary. For example, in the modelling of
digital circuits, gates can be modelled by relations between the boolean values on the terminals.



For the inverter this relation is binary, but that is an exception. Dechter’s book is completely
combinatorial, emphasizing search and propagation techniques. Though Apt does not exclude
real valued variables, and has a section on arithmetic constraints on reals, this book is also far
from the world of optimization.

Yet the history of constraint satisfaction is rooted in the classical notion of constraint. The
oldest scientific use of the term “constraint” is in the sense of “constrained motion”. Such
motion presents a difficulty in Newtonian dynamics, which is satisfactory for the analysis of
dynamical systems such as that of the Moon orbiting Earth. New techniques were needed to
describe the motion of systems like a pendulum. If the bob were to follow the force of gravity
only, it would go straight down. However, its motion is constrained by the distance to the hinge
being constant.

The new technique, analytical dynamics, appeared a century after Newton’s Principia. The
principle of d’Alembert, which was first stated in its full generality by Lagrange, recognizes two
kinds of forces: “impressed forces” and “constraint forces”. The principle uses the fact that
the latter do no work under virtual displacements. As pointed out by Lagrange, the principle
provides a much-needed simplification, which enables easy description of the accelerations of the
constrained system.

Though the books under review are far removed also from the world of analytical dynamics,
it seems likely that the word “constraint” in the sense of constraint satisfaction was borrowed
from analytical dynamics by the engineers at MIT who authored the theses that can be regarded
as the origin of constraint satisfaction. The first of these was Ivan Sutherland. In his 1963 thesis
[12] he defines “constraint” as

A specific storage representation [in computer memory| of a relationship between
variables which limits the freedom of the variables, i.e., reduces the number of degrees
of freedom of the system.

The subject of Sutherland’s thesis is Sketchpad, an interactive drawing program. It allows the
user to create, replicate, and modify geometric objects. The relations between these objects give
rise to sizable systems of equations. Their provenance caused Sutherland to think of them as
constraints in the sense of analytical dynamics.

The two salient features of the system of equations generated by the program were (a)
that many equations were not linear, and (b) the system was sparse. Sketchpad employed
two methods for solving it, both exploiting the sparseness of the equations. The first method
used a graph representing dependencies among the variables. In favourable cases, variables
were found whose values did not depend on those of any other variables. Their values were
then “propagated” through the graph. For the propagation algorithm Sutherland acknowledged
inspiration provided by Moore’s shortest path algorithm [9].

What to do if the system of equations does not unravel in this way? It is unlikely that
Newton’s method would have worked. Instead, Sutherland applied to his nonlinear systems the
Gauss-Seidel method that had been popularized in engineering by R.V. Southwell under the
term “relaxation” [11]. After all, linearity is not essential for relaxation to work: it is just one
way that enables one to isolate one variable in each equation and to ensure that each of the
variables is isolated in at least one of the equations.

In typical applications of relaxation, the system of equations is sparse. But the typical system
is linear, and the usual way of dealing with sparseness is to order the equations and the variables
in such a way that the coefficient matrix gets an advantageous block or band structure. In the
case of nonlinear systems, as in Sutherland’s case, the matrix would be the Jacobian.



The other way of dealing with sparseness is to consider what could be called the “depen-
dency network”, where the nodes are variables and where nodes are linked if the corresponding
variables occur in the same equation. Instead of first determining the Jacobian and attempting
to transform it into a favorable block or band-structured form, one can avoid both steps and let
the solving process automatically determine what its structure is: note which of the variables
have changed sufficiently in the previous step and pick for the next equation one of the few
that contains at least one of these variables. In this way, change in variable values propagates
by means of constraints. Refinements of the idea, under the name of “constraint propagation”,
have become an important part of research in constraint satisfaction. It is data-directed control
of the relaxation algorithm.

To conclude that Sutherland used constraint propagation, one has to read between the lines.
I think it likely that he did. If so, he is the first that I know of. Whoever was the first started
a rich new research area that is central to constraint satisfaction. Thus we see in Sutherland’s
1963 thesis, which was focused on the development of a practical drawing tool, the emergence
of two themes that recurred throughout the new discipline of constraint satisfaction: constraint
propagation and relaxation.

However, the setting of Sketchpad, real variables and equality as only constraint relation,
is not representative of what constraint programming came to be. It is typical for variables
to range over finite sets, often very small ones, like the two truth values or the colours of a
graph-colouring problem. It is also typical for the constraint relations to be taken from a large
assortment that includes some recently invented ones, such as the seven relations between time
intervals [1]. An important relation on small finite sets is the disequality relation (a name
chosen to distinguish it from < and > among numbers). Especially important is the version of
the disequality relation that takes an arbitrary number of arguments.

An important step away from numerical constraint satisfaction problems was taken in the
1972 MIT thesis by David Waltz [15, 14]. It was concerned with computer recognition of three-
dimensional polyhedral bodies in two-dimensional images. This requires the lines in the image
to be labelled according to whether they arise from a shadow, from one body obscuring another,
from the intersection of two faces of the same body, among other possibilities.

In Waltz’s thesis, variables range over small, application-specific finite sets. In addition, his
relations are also application-specific, in this case arising from the various ways in which lines in
the image can intersect. This is about as different from equations in real-valued variables as one
can get. Yet, as a constraint satisfaction problem, Waltz’s had in common with Sutherland’s
that it was sparse: most constraints related but a small subset of the variables. That again
suggested data-directed control.

Waltz’s algorithm contains another important innovation. In conventional relaxation, one
always associates one value with each variable, even though these values may not be anywhere
near their solution values. That is, one starts with a guess. Each step in the relaxation changes
(for the better, as one hopes) the guess for one variable. In favourable cases, these guesses
approach a solution.

Waltz did not guess; he knew what he did not know. Accordingly, he associated with every
variable a “domain”: the set of its possible values. Using a constraint in « and y could at best
mean that the non-occurrence of certain values in the domain for = allowed the removal of one
or more values from the domain of y. If y occurs in another constraint, say, with a variable z,
then this reduction of its domain may trigger a reduction of the domain of z. This propagation
process is often referred to as “relaxation”, even though it is far removed from the setting of
equations in real variables.

A typical example of reasoning a la Waltz is the situation where all of the variables z, y,



and z have to be different. If the sets of values associated with these variables are {a,b,c},
{b,c}, and {b,c} respectively, then one can eliminate b and ¢ as possible values for x. In the
terminology of the field, these values can be eliminated as being inconsistent; inconsistent with
the constraint that the three variables be different.

If a constraint satisfaction problem has one solution, then all one has to do to find that solu-
tion is to allow initially all values as possible for all variables and then to remove all inconsistent
values. A typical constraint satisfaction problem is NP-hard, so this is easier said than done.
The field has advanced by identifying various feasibly computable levels of consistency short
of complete absence of inconsistent values. These are identified by qualifying the word “con-
sistency” in various ways. A bewildering variety of such terms are used. Apt’s chapter “Local
Consistency Notions” lists nine varieties of local consistency, followed by a final section “Graphs
and Consistency”. In Dechter this last section is expanded into an entire chapter. It represents
the culmination, so far, of Sutherland’s new way of approaching sparseness by exploiting the
structure of the dependency graph of the constraints.

Next to consistency, the propagation introduced by Waltz is an important topic in constraint
satisfaction. Both Apt and Dechter devote a chapter to it. Apt’s is notable for his surprisingly
general framework, going far beyond the confines of constraint satisfaction. He starts with prop-
erties of sets of functions on partially ordered sets that have one or more of the properties of
being inflationary, monotonic, idempotent, and mutually commutative. He gives a compelling
development of fixpoint algorithms that iterate such functions. One would expect results such
as these to be included in set theory texts, were it not for the fact that they were only re-
cently obtained (by Apt) in order to better understand the wide variety of ad-hoc propagation
algorithms found in the literature.

Next to consistency and propagation, the main topic of constraint satisfaction is search.
In any nontrivial constraint satisfaction problem, propagation to some level of consistency is
not enough to obtain a solution. When propagation has exhausted all possibilities of removing
inconsistent values from the domains, further progress depends on splitting and repeating prop-
agation in the resulting constraint satisfaction problems. The properties of the resulting tree
of constraint satisfaction problems, and the algorithms for traversing it, constitute the topic of
search. Apt has an excellent one-chapter introduction; Dechter digs deeper with three chapters:
Look-Ahead, Look-Back, and Stochastic Search (which includes simulated annealing).

We have seen how constraint satisfaction arose with Sutherland’s work on numerical prob-
lems and how Waltz adopted Sutherland’s propagation for his combinatorial problem in scene
recognition. In the combinatorial setting constraint satisfaction developed into a new discipline.
As a sign of its maturity, it started competing with Integer Programming as the method of
choice for solving combinatorial problems. Take for example the notorious 10-machine/10-job
benchmark mt10 in job-shop scheduling. It was proposed by Muth and Thompson [10] in 1963.
For some time various researchers succeeded in finding ever better solutions. These improve-
ments came to a halt after about ten years. For another ten years failure to improve the world
record on mt10 hardened the suspicion that the optimum had been found. At the end of this
period, Carlier and Pinson [2] succeeded in reducing the search space sufficiently to prove that
the long-standing record is indeed the optimum.

All this work was done in integer programming: it consisted of improvements in search, in
generating cutting planes, and, of course, it benefited from increased computer performance. One
sign of the coming of age of constraint satisfaction in the 1990s was that mt10 was more and more
routinely solved by constraint satisfaction methods, without reliance on integer programming.

Although in this instance a purely combinatorial constraint satisfaction attack was success-
ful, it is likely that there is great potential in developing constraint satisfaction for numerical



problems. That is, to exploit the possibility that the variables range over the reals and that the
domains take the form of intervals bounded by floating-point numbers. So far this approach to
numerical computation has remained outside of the main stream of constraint satisfaction. It
is not mentioned in Dechter. In Apt there is a brief section on arithmetic constraints between
real-valued variables. For this neglected area, the best source is still “Numerica” by Van Hen-
tenryck, Michel and Deville [5], where constraint satisfaction can be seen to be a competitive
alternative to the continuation method for solving nonlinear equations. The methods in this
book are applicable to systems of nonlinear inequalities as well and also to nonconvex global
optimization.

Constraint satisfaction as understood by Apt and by Dechter seems to have no connection
with optimization as understood by the applied mathematics community. Yet it is highly rele-
vant. It is the great merit of Hooker’s “Logic-Based Methods for Optimization” [6] to make the
connection. This is not obvious from title because of the emphasis on logic. Indeed, Hooker’s
motivation is to break out of the classical optimization framework by the use of logic as a
more flexible modelling tool. In this Hooker was preceded by Van Hentenryck who noticed that
languages like AMPL and GAMS lacked the scope for the enlarged modelling capabilities of
constraint satisfaction. This led him to the language OPL [4], now used in some of the ILOG
software. Early implementations of constraint satisfaction used logic as programming framework
[3, 8]. This connection led Hooker to include an excellent account of constraint satisfaction in
[6].

For those in the optimization field to benefit from the developments in constraint satisfaction,
my summary recommendation is to study both books under review first, to obtain the necessary
distance from the traditional optimization mind set. There is surprisingly little overlap between
the two books. Apt emphasizes the roots in logic; Dechter the algorithmic complexity aspects. It
is best to start with Apt, for the larger picture and for an introduction to the topics where they
overlap. Then Numerica [5] for a glimpse of the potential of constraint satisfaction in classical
numerical computation. Then back to optimization with Hooker [6].

References

[1] J. Allen. Maintaining knowledge about temporal intervals. Comm. ACM, 26:832 — 843,
1983.

[2] J. Carlier and E. Pinson. An algorithm for solving the job-shop problem. Management
Science, 35:164-176, 1989.

[3] Pascal Van Hentenryck. Constraint Satisfaction in Logic Programming. MIT Press, 1989.
[4] Pascal Van Hentenryck. The OPL optimization programming language. MIT Press, 1999.

[5] Pascal Van Hentenryck, Laurent Michel, and Yves Deville. Numerica: A Modeling Language
for Global Optimization. MIT Press, 1997.

[6] J. Hooker. Logic-Based Methods for Optimization - Combining Optimization and Con-
straint Satisfaction. Wiley-Interscience series in discrete mathematics and optimization.
John Wiley and Sons, 2000.

[7] William Leler. Constraint Programming Languages: Their Specification and Generation.
Addison-Wesley, 1988.



[8] Kim Marriott and Peter J. Stuckey. Programming With Constraints : An Introduction. The
MIT Press, 1998.

[9] E.F. Moore. On the shortest path through a maze. In International Symposium on the
Theory of Switching, 1959.

[10] J.F. Muth and G.L. Thompson. Industrial Scheduling. Prentice Hall, 1963.
[11] R.V. Southwell. Relazation Methods in Engineering. Oxford University Press, 1940.

[12] 1. Sutherland. Sketchpad: a Man-Machine Graphical Communication System. PhD thesis,
Dept. of Electrical Engineering, MIT, 1963.

[13] Edward Tsang. Foundations of Constraint Satisfaction. Academic Press, 1993.

[14] D. Waltz. Understanding line drawings in scenes with shadows. In Patrick Henry Winston,
editor, The Psychology of Computer Vision, pages 19-91. McGraw-Hill, 1975.

[15] David L. Waltz. Generating Semantic Descriptions From Drawings of Scenes With Shadows.
Technical report AITR-271, Computer Science and Artificial Intelligence Laboratory, 1972.

Maarten van Emden
University of Victoria



