
Getting to the real problem: experience with BNR
Prolog in OR

W.J. Older∗ G.M. Swinkels† M.H. van Emden‡

Abstract

Although job-shop scheduling is a much studied problem in OR, it is based on an
unrealistic restriction, which is needed to make the problem computationally more
tractable. In this paper we drop the restriction. As a result we encounter a type
of cardinality constraint for which we have to develop a new method: translation to
a search among alternative sets of inequalities between reals. Our solution method
depends on logic programming: we run a specification and rely on the underlying
interval constraint-solving machine of BNR Prolog to reduce the search space to a
feasible size. In this way, by making the programming task trivial, it is possible
to tackle the real problem rather than a related one for which code happens to be
already written.

1 Introduction

To buy off the shelf, or to commission a custom program? This is a decision that often needs
to be taken and is sometimes a difficult one. Even in easy-to-program applications such
as bookkeeping or inventory control, this decision often comes out in favour of deploying
an existing package because of the high cost of developing custom software. Especially
in Operations Research (OR), where the algorithms are much more sophisticated, there is
great reluctance to embark on a custom programming project. As a result there is great
temptation to twist the actual problem to be solved to a different one for which a package
happens to be available.

Logic programming is promising in such a situation: what demands considerable pro-
gramming effort in Fortran or C can be easy in Prolog. However, when an OR problem is
thus quickly and elegantly programmed in Prolog, performance tends to be abysmal. In
response to this challenge, the designers of CHIP [7] have shown that it is possible to run
logic programs for certain combinatorial OR problems sufficiently fast to be of practical

∗Computing Research Laboratory, Bell Northern Research, Ottawa, Canada
†Department of Computer Science, Simon Fraser University, Canada
‡Department of Computer Science, University of Victoria, P.O. Box 3050, Victoria, B.C., Canada.

Internet: vanemden@csr.uvic.ca. Voice: (604) 721-7225. Fax: (604) 721-7292.

1

2

interest. Van Hentenryck [11] has acknowledged that such programs tend to be slower than
custom C code. But they are much faster to program. It is not often that one can choose
between hiring a programmer to write custom C code or buying a workstation to absorb
the extra computational load imposed by doing one’s OR applications in CHIP.

CHIP derives its advantage over Prolog from the use of the consistency method based on
finite domains [15, 14]. This gives good results for many combinatorial OR problems. Other
variants of Prolog, such as BNR Prolog [2], are based instead on intervals of numbers. In
this paper we present an OR problem where this other approach yields advantages similar
to those demonstrated for CHIP and its successors.

Our starting point is a situation that is typical in practice: the actual problem does
not fit one of the standard OR methods, at least not in a computationally feasible way.
Instead of distorting the problem into a temptingly close relative that does occur in the
OR repertoire, we make use of the high level of Prolog to tackle the problem itself. We find
that the general-purpose interval narrowing algorithm based on consistency is sufficient to
achieve an impressive reduction of the search space.

Thus the situation in general terms. In the remainder of this paper we describe the
specific OR problem that we address, the mathematical analysis that makes it amenable
to interval constraints, and finally we show the complete code of a short program for which
interval constraints give a promising reduction in search space.

2 From trucking to the job-shop

Our starting point was how to schedule logging trucks. Logs are harvested and collected at
the most remote sites that are accessible. They are then moved by truck to a depot where
they are sorted in preparation for further transportation. The depot services around ten
collection sites. Each truck departs empty from the depot, drives to a collection site, is
loaded full, returns to the depot, is unloaded completely and then is ready to start another
cycle, possibly servicing a different collection site, but returning to the same depot. Each
collection site is characterized by the rate at which logs are harvested and by the maximum
quantity of timber that can be stored at the site.

The penalty for poor scheduling is that trucks have to wait till a full load is available
at their destination site, or that harvesting has to be interrupted because of the limit on
storage capacity at the collection site. Similar harvesting situations occur elsewhere: wheat,
sugar beets, and wherever agriculture is mechanized on a sufficiently large scale.

Thus we consider abstractly the harvest collection scheduling problem, where there are
a number of sites at which produce is collected by some kind of harvesting machine. All
sites are serviced by a single depot. A fixed number of trucks is available to drive empty
from the depot to a site, get fully loaded there, and return to the depot to be unloaded.

This general formulation also covers the dual situation, where the depot supplies to the
sites instead of collecting from them. Each of the sites is then again characterised by its
distance from the depot and by the rates at which it consumes. But we do not consider
vehicle routing, where other routes are considered than from depot to a site and back.

3

In OR a problem is rarely new. So we looked around for logically similar, though
possibly superficially different scheduling problems. A promising candidate seemed to be
that of job shop scheduling of which we next give a brief description.

The job-shop scheduling problem. Even if a job is as simple as making a hole in a
piece of metal, it may be necessary to drill, tap, counterbore, ream, and countersink, all in
a particular order. Each activity requires a machine that cannot do anything else. When
many jobs have to be done, each requiring the same machines in a different order, it is
difficult to find an optimal schedule.

Many scheduling problems have similar characteristics. They have been abstracted as
follows to the job-shop scheduling problem: a number of jobs, each consisting of a sequence
of activities, have to be completed. There are available machines, one type of machine
for each activity. Each machine can only be engaged in one activity at any moment in
time. The sequence of the activities in each job is given, being determined by technological
constraints. Two problems are considered in such situation:

1. the minimization variant, which is to minimize the criterion of interest. A common
example of such a criterion is the makespan, the elapsed time between the start time
of the first activity and the completion time of the last activity.

2. the decision variant, which is to decide whether a feasible schedule exists with a given
makespan

From harvest collection to the job-shop. Harvest collection can be regarded as an
instance of the job shop: getting the day’s produce from a site can be regarded as a job.
The activities of the job are to get the successive truck loads of produce to the depot.
As in the job shop, each activity requires a machine, a truck in this case. Viewed in
this way, the sequence of activities is not given explicitly beforehand, but is generated by
a nondeterministic algorithm that takes the production rate and the storage capacity of
the site as inputs. Thus it might seem we have a special case of the job-shop scheduling
problem.

However, in the harvest collection problem it is the rule that trucks are interchangeable,
though exceptions to this rule exist. In job shop scheduling it is the other way around: for
each activity there is exactly one machine on which this activity can be performed. At first
it was not clear how important this distinction is.

What is clear, is that in practice we are not alone in requiring such a generalization
of the job-shop scheduling problem: whenever one machine consistently is found to be the
bottleneck, another functionally equivalent copy of it will usually be acquired. Thus job-
shops where the numbers of copies of each machine roughly reflect the relative demand for
each type of activity are the rule rather than the exception.

The question then arises, how important is the restriction to one copy of each machine
type? The history of an important benchmark, the 10 machine, 10 job problem, helps to
answer this question. Originally proposed by Fischer and Thompson in 1963 [8], various

4

researchers kept getting better solutions for this problem for twenty years, until finally
Lageweg posted a record that still stands. In fact a few years later it was proved by Carlier
and Pinson [4] that the record was indeed the optimum. For a recent survey of the problem,
see [17].

This proof was done by reducing the search space so far that complete traversal was
possible. To achieve this reduction essential use was made of the restriction of one copy
per machine type. Hence the temptation is great to pretend to have a job-shop scheduling
problem when one in fact does not.

The harvest collection problem thus leads to an important issue in OR: to formulate and
solve a suitable generalization of job-shop scheduling. In this paper we leave the harvest
collection problem at this point. From now on we are only concerned with the generalization
of job-shop scheduling to a practically more relevant form.

Cardinality constraints, cumulative constraints, and the generalized job-shop
scheduling problem. In the case of one copy of a machine type, the constraint that a
machine can only do one thing at at time is easily expressed as a disjunctive constraint
[12]. For example, activities 1 and 2 with start times S1 and S2 and durations D1 and D2

on the same machine give rise to the disjunctive constraint

S1 +D1 ≤ S2 or S2 +D2 ≤ S1.

The problem with disjunctive constraints is that they do not generalize to the case of
more than one copy of a machine: then it is no longer the case that of two activities on the
same machine type one is before the other or the other way around.

We will refer as JSS to the usual version of the job-shop scheduling problem [3, 9], and as
GJSS to the generalized, and practically more common, situation where it is possible that
more than one functionally equivalent copy of a machine is available. In JSS “machine” is
unambiguous. To avoid confusion in GJSS, we will henceforth avoid the use of “machine”
and instead speak either of “machine type” or of “machine copy”.

Instead of the usual disjunctive constraint, we have a form of cardinality constraint.
This case study shows how to solve this type of cardinality constraint by a translation to
the type of interval constraints that is built into a logic programming language such a BNR
Prolog.

For practically useful solution of scheduling problems one needs both powerful primitives
in the programming language to generate constraint systems as well as methods adequate
for solving these systems. The cardinality operator of Van Hentenryck and DeVille [13] is
a primitive that makes it easy to express cardinality constraints. The work reported here
does not help in expressing the problem, but is a solution method.

3 Translating the cardinality constraints of GJSS to

inequality constraints

An example. Figure 1 shows the Gantt chart of a schedule with three functionally

5

j = 1 2 3 4 5 6

f(j) = 2 3 1 4 6 5

Figure 1: Gantt chart for three functionally equivalent copies of a machine type.

equivalent copies of a machine type. There is a horizontal time line for each machine. On
it the scheduled activities are shown as strips covering the time periods during which the
machine is engaged in the activity.

One way to express the constraint that three copies of the machine type are available
and that each copy can be engaged in at most one activity is to choose a finite sequence
of time instants and to define for each instant a 0-1 variable for each activity on the
machine type, indicating whether a machine copy is engaged in that activity at that time
instant. For each time instant the sum of the 0-1 variables should not exceed the number
of available machine copies. This leads to an integer linear programming problem. If one
wants a reasonably fine time resolution, than it leads to a large integer linear programming
problem.

In general, integer linear programming problems are NP complete. When such a prob-
lem is treated as a continuous linear programming problem, it may happen that the solution
comes out in integer values. Then a solution to the integer linear programming problem has
been found in a much more efficient manner. Gebotys and Elmasry [10] have successfully
followed this approach, using the criterion of unimodality. It may well be that this applies
in our case, but we have not investigated this matter.

In our situation a resource is either not used at all, or it is used to the full. Hence the
0-1 variable. In other applications there is a quantitative degree to which a resource is used.
Then the 0-1 variables need to be changed to continuous ones, whose sum is constrained
not to exceed a given maximum. This leads to the cumulative constraints of Aggoun and
Beldiceanu [1]. Note that there are two aspects to cumulative constraints: the language

6

primitive that makes the problem easy to express and the method for solving the resulting
constraint system. We only address the latter aspect, giving a solution method for the
special case of cumulative constraints when the resource demand is either 0 or 1.

Because inequality constraints between reals are easier to solve, we consider instead the
start times and completion times of the activities. Let σ1, . . . , σ6 be the start times of the
activities for the given machine type in nondecreasing order of magnitude. For reasons
to be explained later, the completion times of the activities are indexed as τ4, . . . , τ9 in
nondecreasing order of magnitude. Note that because of the differing durations of the
activities, the order among the start times gives a different order to the activities than the
order among the completion times.

The schedule determines for each activity two things: the machine copy on which it is
to be performed and the rank among the activities on this machine copy. For activities
that are not first on their machine copy, both determinations can be made by stating the
activity immediately preceding it. We prefer to use this method for all activities, first
activities included. This is accomplished by assuming a dummy activity on each machine
copy that completes before the first activity starts. Including these dummy activities we
have as completion times τ1, . . . , τ9 in nondecreasing order.

The completion times can now be treated as machine availabilities. Each completion
time indicates that a machine is available from that time onwards until the next activity is
started on that same machine copy. A schedule can now be described by specifying for each
activity j that it is the first to start after a particular element of the sequence of machine
availabilities τ1, . . . , τ6. Let us express this by saying that for each j, activity j is the first
to start after τf(j). The mapping f is such that j 6= k implies that f(j) 6= f(k). In other
words, each machine availability can only be used up by one activity. See Figure 1 for the
f in the example.

Given f it is now easy to express the machine constraints: for each activity j, σj ≥ τf(j).
Notice also in Figure 1 that we also have the simpler set of inequalities σj ≥ τj for each
activity j. We next show that these latter inequalities are not a special property of this
example, but hold true in general.

The general case. Let there be n activities to be scheduled on k copies of the same
machine type. The start times of the activities are σ1, . . . , σn in nondecreasing order.
Including the k completion times of dummy activities before σ1, the completion times are
τ1, . . . , τn+k in nondecreasing order. A schedule is a function f : {1, . . . , n} → {1, . . . , n}
such that such that j 6= k implies that f(j) 6= f(k). A schedule is feasible iff for all
j = 1, . . . , n, we have that σj ≥ τf(j).

Theorem 1. A schedule is feasible iff for all j = 1, . . . , n, we have that σj ≥ τj.

Proof. (If) We assume σj ≥ τj. Hence at least j availabilities occurred at or before σj.
Because the σ’s are nondecreasing, j − 1 starts occurred before that time. It follows that
there is at least one machine copy available at time σj. Hence the schedule is feasible.

7

(Only if). We assume the schedule to be feasible. As by the assumption on f , all of
f(1), . . . , f(j) are different integers not less than one, at least one of these must be greater
than or equal to j. Hence at least one of τf(1), . . . , τf(j) must be, by the ordering of the τ ’s,
greater than or equal to τj. By the assumption of feasibility,

σ1 ≥ τf(1), . . . , σj ≥ τf(j),

so that at least one of σ1, . . . , σj is at least τj. As σ1, . . . , σj are in nondecreasing order, σj

is such a one. Hence σj ≥ τj.

The theorem allows us to translate the integer formulation of the cardinality constraint
to an equivalent set of inequalities between reals. This is more powerful for two reasons.

1. The Simplex algorithm for continuous linear programming, though in the worst case
also exponential, is in practice vastly more efficient than integer linear programming;
on average linear in the number of constraints and logarithmic in the number of
variables [5]. And the more recent interior point algorithms for continuous linear
programming of Khachian and of Karmaker are polynomial in the worst case and
are beginning to be competitive with Simplex in the typical average case [16]. For
the simple type of inequality encountered here, interval narrowing may well be faster
still, at least in the incremental version required of both methods.

2. The formulation allowed by Theorem 1 is exact. The integer linear programming
formulation, even with many variables, is still an approximation that can be improved
by yet further increasing the number of variables. The continuous formulation is
exact and involves a number of variables that is small compared with even rough
approximations to time in the integer linear programming formulation.

Figure 2 shows in diagram form the inequalities constraining the start times and com-
pletion times of the activities on three copies of a machine type. The horizontal arrows
determine the order in time of the start and completion times. Note that all activities, over
all three machines copies, are shown here. Thus a horizontal arrow typically connects start
times of activities on different machine copies.

4 A constraint logic program for GJSS

Let us review what the constraints are when our translation is used.

Theorem-1 constraints. We need to schedule all activities for a machine class, subject
to the constraint that each machine copy is engaged in at most one activity and that no
more than, say, k machine copies are ever engaged at the same time. We saw that according
to theorem 1 this is equivalent to the constraint that the j-th termination occurs before
the j-th start of an activity on this machine class. Thus if there are n activities for a
given machine class, then there are n − k inequality constraints arising from the limited
availability of machines.

8

Figure 2: Inequality constraints resulting from translation of cardinality constraint. τ1,τ2,
and τ3 are completion times of dummy activities completing before the beginning of the
scheduling period.

The duration constraints. As our translation forces us to include a variable for the
completion time as well as for the start time of each activity, we need to introduce the
equality constraint stating that these times differ by the given duration of the activity.

The job-precedence constraints. For any two adjacent activities in a job, there is the
constraint that the completion time of the earlier one is not greater than the start time of
the later one.

The makespan constraint. No start time can be earlier than a given time. No com-
pletion time can be later than a given time.

The sortedness constraint. The variables for the start and completion times that occur
in the Theorem-1 constraints refer to these times in chronological order. The variables
for these same times that occur in the duration and the job precedence constraints are
determined by the identity of the activity, as given in the data of the problem. The order
in which the activities occur in the data bear no relation to the order in which the activities
start or complete in any of the schedules that are considered when searching for an optimum
schedule. Thus we have to have two variables for the start time of each activity and two
variables for each completion time.

Suppose now that the variables for the start times for the activities on all machines
of the same type occur in a list M . To make it possible to use this list to express the
Theorem-1 constraints, we have to assume it is in nondecreasing numerical order. Suppose
that the variables for the same start times used in the other constraints also occur in a list,
say J . Then in addition to the constraints described above, we also have the constraint
that for each machine type, M is the sorted version of J .

9

Figure 3: The five constraint types.

Figure 3 is a graphical summary of the five types of constraints resulting from our trans-
lation.

5 The algorithm

All constraints, except the sortedness constraint, are inequalities between reals. We use
the following method to combine these with the sortedness constraint.

Nondeterministic sorting. The most natural way to express the sortedness constraint
is as a goal in a logic program sort(J,M), stating that list M is a sorted version of list J.
In conventional programming and in standard Prolog this is not possible, as the elements
of J are the as yet unknown start times of the activities. We need a nondeterministic form
of sorting that sorts with incomplete information on inputs.

Let us first consider the case where the elements of list J are known. The goal sort(J,M)
unfolds into a sequence of inequalities. Solving these inequalities then results in one permu-
tation, which, when applied to J , results in M . In interval constraint logic programming,
the elements of J are allowed to be specified only by intervals, which can be large. As a
result, the goal sort(J,M) unfolds into a tree where inequalities between elements of J are
the nodes. Each path along the tree specifies a permutation. Prolog’s computation rule
results in depth-first traversal of this tree.

A typical example of the power of constraint logic programming is that the nondeter-
ministic sorting algorithm just sketched is automatically performed by any of the same

10

simple sorting algorithms that one finds, for example, in one of the earliest texts on Prolog
[6], provided that the list elements are interval variables as allowed in BNR Prolog:

sort(X,Y) :- sort(X,Y,[]).

sort([],A,A).

sort([X|Xs],A,C) :-

part(X,Xs,Low,High),sort(Low,A,[X|B]),sort(High,B,C).

part(X,[],[],[]).

part(U,[X|Xs],[X|Low],High) :- X =< U, part(U,Xs,Low,High).

part(U,[X|Xs],Low,[X|High]) :- U < X, part(U,Xs,Low,High).

When activated with the query

?- range(X,[1,3]),range(Y,[2,4]),range(Z,[5,7]),range(U,[6,8]),

sort([X,Y,Z,U],ZZ).

the program gives four answers, each containing one of the permutations that is compatible
with the initial intervals of X, Y, Z, and U. Moreover, in each of these the intervals are
narrowed as required by that particular permutation.

ZZ = [[2,3],[2,3],[6,7],[6,7]] permutation: [Y,X,Z,U]

[[2,3],[2,3],[5,7],[6,8]] [Y,X,U,Z]

[[1,3],[2,4],[6,7],[6,7]] [X,Y,U,Z]

[[1,3],[2,4],[5,7],[6,8]] [X,Y,Z,U]

A constraint logic programming language incrementally solves the constraints as they
are encountered during the traversal of the tree. As soon as an inconsistent set of constraints
has been accumulated when going down a path, backtracking ensues.

The program. We post the sortedness constraint after the other constraints. Then, as
the tree is traversed, the constraints determining the permutation are considered simulta-
neously with all other constraints.

The program is activated by the query:

?- extract(Begin,End,JL,ML), jobPrecedences(JL),

machineConstraints(ML,Schedule).

We will not be concerned with the details of the first goal. The data for the problem
appears in some format of facts and is processed into two lists: the job list JL specifying the
precedences of activities within each job, and the machine list ML specifying the machine
type for each activity. The arguments Begin and End specify the period in which all
activities are scheduled. They are needed here because the initial interval for the variables
are created here is [Begin,End].

JL is a list of the form

11

[[...,[S,D],...],...,[...,[S,D],...]]

where each [S,D] is the [start time,duration] of an activity, and each [...,[S,D],...]

is the list of activities of a job, in the order as they have to be executed.
ML is a list of the form

[[JAs,Ss,Ts],...,[JAs,Ss,Ts]],

with one element for each machine. [JAs,Ss,Ts] consists of three lists. The i-th elements
of each of the three lists are [J,A], S, and T, which are the [Job number, Activity number],
start time, and completion time of the i-th activity assigned to the machine. The i-th
activity is in the order as the activities are listed in the data. This order is typically not
the schedule order.

The essence of the approach via interval constraints is that we create variables standing
for the real numbers which are the start times and completion times, even though we don’t
know these. All these real-valued variables have intervals associated with them within
which their true value is known to lie. Initially, these intervals are the entire scheduling
period. As constraints are applied, the intervals become smaller.

We proceed with the definitions of the predicates called above.

jobPrecedences([]).

jobPrecedences([J|Js])

:- sorted(J),jobPrecedences(Js).

sorted([X]).

sorted([[X,Dx],[Y,Dy]|Zs]) :- X+Dx =< Y, sorted([[Y,Dy]|Zs]).

/* X+Dx is the completion time of the preceding activity and Y is

the start time of the following activity.

*/

The meat of the program is in the machine constraints. The main predicate here is
machineConstraints(ML,Schedule) meaning that Schedule is the schedule determined
by the data sorted in machine order, given in ML. Its definition defines the equivalent of
Figure 3 for each machine type. In the following clause body you see the two sort boxes of
Figure 3. The Theorem-1 constraints are generated by postST. The body does not generate
the duration constraints at the top of Figure 3; as the data were prepared in the top-level
goal extract, it was easiest to include them at that time.

machineConstraints([],[]).

machineConstraints([[JAs,Ss,Ts]|Ms],[Sigs|Z])

:- sort(Ss,Sigs),sort(Ts,Taus),

postST(Sigs,Taus,3),

machineConstraints(Ms,Z).

12

postST(Sigs,Taus,0) :- postST(Sigs,Taus).

postST([Sig|Sigs],Taus,K)

:- K > 0, K1 is K-1, postST(Sigs,Taus,K1).

postST([],_).

postST([Sig|Sigs],[Tau|Taus])

:- /* Theorem 1: */ Tau =< Sig,postST(Sigs,Taus).

Here the sort goals call a quicksort predicate as defined earlier.

6 Solving inequalities by interval constraints

BNR Prolog solves interval constraints by means of an arc-consistency algorithm that
generalizes AC-3 [14] to allow relations of arbitrary arity. Such an algorithm can only
guarantee that no solution exists outside the resulting intervals; one cannot conclude that
a solution exists within. That is, if BNR Prolog terminates with YES, then a solution may
exist and, if so, is guaranteed to lie in the final intervals. If BNR Prolog terminates with
NO, then no solution exists.

It can be shown that the special properties of the constraint network generated by our
algorithm do guarantee the existence of a solution. That is, if BNR Prolog terminates with
YES with the program shown, then a solution exists.

In general, we have to search for such a solution. That is, one can bisect one of the
answer intervals and re-activate the constraint solver and repeat this for the other intervals.
Whenever failure results, there is always a possibility to backtrack to another choice of
bisected interval. For the constraint network generated by our algorithm this is guaranteed
to yield a solution as precise as allowed by the floating-point number system. However,
such a search can be very time-consuming.

It can also be shown that the network generated by our algorithm has the sequential
instantiation property [2]. This guarantees that not only at least one solution exists within
the answer intervals, but that there are even so many, that we can instantiate any variable
to any point within its answer interval, reactivate the constraint solver, and repeat the
process for each variable in turn in arbitrary order without incurring failure. Thus, we can
extract a point solution from the final intervals without search.

7 Conclusions

We started with the problem of scheduling logging trucks. As the obvious formulation in
terms of integer linear programming is intractable, we tried to find a translation to another
OR problem for which a computationally feasible method exists. This pointed to the job-
shop scheduling problem, although this has remained a very difficult problem in spite of
much research literature devoted to it. However, we would have to distort our problem to

13

make it fit the job-shop scheduling problem. An essential feature of our problem translated
to multiple copies of the same machine type in JSS. As this is common in many practical
situations other than ours, we have formulated a suitable generalization of JSS, which we
called GJSS.

This paper shows how the type of cardinality constraint that distinguishes GJSS from
JSS can be solved by writing a logic program as simple (and as simple-minded) as a speci-
fication and running it under BNR Prolog.

JSS is a hard problem: as small an instance as ten machines, ten jobs and one hundred
activities can require extremely sophisticated code that heavily relies on there being no
more than one copy of each machine type. This does not prove that GJSS is harder, but it
does lend some plausibility that it is so. We believe that the method described in this paper
is the first to make any headway with it. The program shown was run on an instance of
GJSS with six machines (three types of which two copies each), seven jobs and 23 activities
total. It is interesting to note that our naive algorithm specifies in principle trying all
permutations of four lists of eight elements and two lists of seven elements, independently
of each other, that is, a search space of (7!)2(8!)4 ≈ 6.7×1025 combinations of permutations.
The constraints reduce it so far that what remains is traversed in less than a minute on a
laptop computer.

The pure GJSS problem is too hard to solve in any practical size. But what we need
to solve in practice is the logging truck problem, which is GJSS with a large number of
additional constraints. In GJSS, as in JSS, there is no constraint on when an activity is
scheduled other than that it obeys the precedences within its job. The corresponding entity
in the logging truck problem is a trip by a truck, which is severely constrained in time: it
must arrive neither too early nor too late at a site. This translates to GJSS with severe
constraints in absolute time in addition to the job precedence constraints. In constraint
logic programming, such a variant is easily accommodated: just add the extra constraints.

In deciding whether to buy off the shelf or to commission custom code, CHIP has tilted
the balance in favour of the latter option, making it more likely that the real problem gets
solved. Interval constraints add a further contribution in this direction. But of course the
really real problem will remain elusive.

References

[1] A. Aggoun and N. Beldiceanu. Extending CHIP in order to solve complex scheduling
problems. Journal of Mathematical and Computer Modelling, 17:57–73, 1993.

[2] Frédéric Benhamou and William J. Older. Programming with CLP(BNR): Examples
on finite domains. To be published Journal of Logic Programming, 1993.

[3] J. Carlier and P. Chrétienne. Problèmes d’Ordonnancement. Masson, 1988.

[4] J. Carlier and E. Pinson. An algorithm for solving the job-shop problem. Management
Science, 35:164–176, 1989.

14

[5] V. Chvatal. Linear Programming. W.H. Freeman, 1983.

[6] W.L. Clocksin and C.S. Mellish. Programming in Prolog. Springer-Verlag, 1981.

[7] M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf, and F. Berthier.
The constraint programming language CHIP. In Proc. Int. Conf. on Fifth Generation
Computer Systems, 1988.

[8] H. Fischer and G.L. Thompson. Probabilistic learning combinations of local job-shop
scheduling rules. In J.F. Muth and G.L. Thompson, editors, Industrial Scheduling,
pages 225–251. Prentice Hall, 1963.

[9] S. French. Sequencing and Scheduling. Ellis Horwood, 1982.

[10] C. Gebotys and M Elmasry. Global optimization approach for architectural synthesis.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
12:1266–1278, 1993.

[11] P. Van Hentenryck. Personal communication. 1990.

[12] Pascal Van Hentenryck. Constraint Satisfaction in Logic Programming. MIT Press,
1989.

[13] Pascal Van Hentenryck and Yves Deville. The cardinality operator: A new logic con-
nective for constraint logic programming. In Frédéric Benhamou and Alain Colmer-
auer, editors, Constraint Logic Programming, pages 383–403. MIT Press, 1993.

[14] A.K. Mackworth. Consistency in networks of relations. Artificial Intelligence, 8:99–
118, 1977.

[15] Ugo Montanari. Networks of constraints: Fundamental properties and applications to
picture processing. Information Science, 7(2):95–132, 1974.

[16] G. Nemhauser and G. Wolsey. Integer and Combinatorial Optimization. John Wiley,
1988.

[17] R.J.M. Vaessens, E.H.L. Aarts, and J.K. Lenstra. Job shop scheduling by local search.
Mathematical Programming B. To appear.

