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Abstract

This paper presents an argument in support of the thesis that
first-order predicate logic would be a useful next step in the
development towards higher-level program languages. The argument
is conducted by giving a description of Kowalski's system of logic
which is sufficiently detailed to investigate its computational
behaviour in the two examples discussed: a version of the "quicksort"

algorithm and a top-down parser for context-free languages.
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0. Introduction

Kowalski has argued that predicate logic is a language useful
for stating problems and that recent developments in resolution,
proof procedures make it possible for problems stated thus to be
solved automatically. This is of interest to those concerned with
computer-aided problem-solving, which encompasses not only conventional
programming, but also the new applications being studied in

Artificial Intelligence and elsewhere in computer science research.

The present paper is intended as a supplement to Kowalski's
arguments-[14, 15], It is useful to conduct an argument from the
point of view of the deyelopment of program languages as proceeding
from the low-level to the high-level. I will first argue that each
higher level of program language represents a step towards "automatic
programming", a level where programs become more like descriptive
specifications of algorithms and less like sequences of commands,
Using a formulation of automatic programming due to Green [8], I
show that predicate logic, in Kowalski's interpretation as a system
for stating and solving problems, is a possible and useful next step

in the development of program languages.

The argument depends critically on some details of the proof
procedure used. In the early experience of resolution theorem-
proving, proofs are usually obtained only-after searching a, frequently
large, search space, The computations performed by an interpreter
for predicate logic programs would be proofs from a logical point of
view. It is, therefore, important to investigate the computational
behaviour of Kowalski's sysltem° In particular, it is of decisive
importance that such an interpreter will not have to search in situations

where a conventional version of the same program would not search.,

The contributions of this paper supporting the feasibility of
first-order predicate logic as a high-level program language are the.

following:

1. The proof procedure is sufficiently precisely defined to study its

computational behaviour.

2. The examples on which computational behaviour is investigated have
some interest in programming: a version of the "quicksort" algorithm

and a’ top-down parser for context-free languages.



-3 -

1. The rd0le of specification language in automatic programming,

Automatic programming means the automation of some kind of
program writing, To take a specific example, think of writing PL-1
programs, a profitable target indeed of automation in programming.
The result of successful automation would be a machine ( a "PL-1

machine") writing PL-1 (the target language) Programs., Such a machine

would still have to be told, no matter how automatic otherwise, what
the product of its activity‘is expected to do, for instance in the

form of a specification of input-output behaviour. Machines being
what they are (for the time being), such a specification would have

to be written in a formal language (specification language).

This is reminiscent of the existing situation where the writing
of machine-code programs has been automated. There exist machines
which accept a "specification" in a formal language (for instance PL-1)
and produce machine-code programs that are expected to comply with v
these specifications. This shows that, if understood in a certain
way, automatic programming has been going on for a long time already.
Its purpose is to produce with less effort better programs. Would

a PL-1 machine achieve any progress towards this goal?

The PL-1 machine would operate in an environment (schematically
*~ shown in figure 1), which would only make sense if specifications

can be better written in specification language than in PL-1: the
PL-1 machine would act as an interface between spezificatfion

language and machine code. ‘However, the PL-1 language was intended
(insofar as it developed pquosefully at all) as an interface

between a human programmer and machine code; why should it be

adopted for the other purpose? To do so would be in the same spirit
as designing the PL-1 machine to hold a pencil and to write characters

on paper.,



human
problem
solver

specification of
\( input-output relation

"PL-1
machine"

<

/ PL-1 program

compiler

N machine-code program

input —_—> computer . output

figure 1: Environment of the "PL-1 machine"

Either one needs a language intermediate between specification
language and machine code and then it seems better not to adopt PL-1,
but to start with a clean slate. Or one does not.need any inter-
mediate language and PL-1 is itself a candidate specification |
language. Again, it seems better to start from scratch and to
’ look for a language especially suited for this purpose. These
considerations apply not only to PL-1 but also.to other conventional
program languages. In either case automatic programming will not
furn out to be an unprécedented innovation but a further step
towards the use of more powerful programming tools as assemblers,

interpreters, and compilers have been in the past.
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2. Two aspects of algorithms specification

The preceding observations suggest that there is no clear-cut
distinction between a specification language for automatic programming
and a higher-level program language, They also suggest that any
step towards automatic programming will be one in an ongoing evolution
towards more powerful tools for computer-aided problem-solving.,
Indeed, the pioneers in compiler design already flew the banner of

Automatic ProgrammingD].

Although no clear-cut distinctions will emerge, it is useful
to compare two aspects of algorithm specification: the imperative
aspect is typical for the lower level of programming as is the
descriptive aspect for the higher level. In a méchine-code program
it is spelled out how things are done, but it is always very hard
to see without additional explanations what is being done. This is
an extreme case of an imperative specification of an algorithm. At
the other extreme, in a specification it is only explained what is
to be done .and it is the problem of automatic programming to convert

this into commands saying how,

Strictly speaking, a language like PL-1 is completely imperative:
every statement corresponds to commands to be executed. However,
the value of such a language lies in.the fact that in a well-written
program it is possible to see without additicnal explanations what
is being done: such-a program has descriptive value as well as
imperative value. Some of the imperative aspects have disappeared
from the program, like the details of storage allocation and the commands
involved in procedure invocdtion. The ABSYS language [496,7} is an
interesting experiment that allowslalgorithms to be specified in a

more descriptive manner.

Predicate logic is usually regarded as a purely descriptive
language: at most able to express what is to be done by a program
“and not how to do it. Yet, with respect to a given proof procedure,
a specification in logic has implications for the imperative aspect, as
will become clear by comparing with each other the two versions of the

sorting example below.

Although the descriptive and imperative aspects of algorithm
specification may be hard to disentangle, I think the distinction is
useful/ )
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useful for characterizing what constitutes a higher level program
language: one that has less commitment to the imperative aspects
of the algorithms to be specified and. by being more descriptive,

is easier to write in and to understand for the human problem-solver.

3. Contributions of Green and of Kowalski

Green [8] has given a very useful definition of four different
tasks in automatic programming by representing them as problems
in automatic deduction. He specified the input-output behaviour
of the required program as a set A of axioms in first-order predicate
logic containing a predicate symbol R such that A R (s,t)
(A logically implies R(s;t) ) if and only if the program 1s to give
output t for input s. Thus, A defines (with respect to the predicate
symbol R) a relation in the mathematical sense be‘ween inputs and

outputs.

The'generality of relations (as compared to functions as usually
studied in mathematics) is suitable here: the required program, as
a map from inputs to outputs, need not be total (an output may not
exist for some inputs) and it need not be determinate (an input may
be followed by any of more than one possible oufputs)u Even 1f the
program computes a total function, i1t is advantageous to specify

it as a relation.

synthesis as tasks in automatie programmihg. He shows that an
automatic theorem-prover can in principle accomplish these (given a
suitable set of axioms, nof necessarily thé same for each task) in

the process of proving a theorem of a particular form. Figure 2

shows how this form determines which of the four tasks is to be carried

out.



Form of theorem to be proved Possible answers Task
R(a,b) yes checking

no :

HX.R(a,x) _ yes, X = b simulation

" no

vx.R(x,g (x) ) yes verification
no, x = C (of program g)

Vx.gyoR(x,y) yes,y = f(x) synthesis
no, x = ¢ (of program )

figgre'Z: Green's tasks in automatic programming

Note in this figure that only synthesis corresponds to automatic
programming as described in section 1. The specification language
is predicate logic and f is the synthesised program in a target
language embodied in the function symbols of the specifying axioms.,
‘Synthesis appears to be a difficult probleﬁ" Before attacking it,

let us pause and consider whether there is not a way around.

To find such a way, we should ask: what is the purpose of a
program, and can it not be achieved in another way? The answer is,
a program is to cause computations to be done automatically on a
computer and, yes, it can be done in another way: by simulation,
As we see in figure 2, for given input a, the automatic theorem-prover
- will produce the output b that would have been generated by the progfam
synthesised from the axioms A. But then, why do we need the synthesised
program if, for any input, we can get by simulation the required output

without the program?

This possibility is at least worth investigating, élthough at
bthe time of Green's work it did not seem to be the most promising
approach. In order to make simulation a practically interesting
possibility, both development of theorem-proving technique aﬁd an

increased understanding of the pragmatics of predicate logic were needed,
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These requirements have been met in the meantime. The SL-resolution
theorem-prover of Kowalski and Kuehner'[161, or each of several
related proof—proéedures [22, 17], can be adapted %o act like a
program language interpreter for logic axioms in the form of "Horn-
clauses". The programming interpretation of Horn clauses is

Kowalski's contribution [j4] to the pragmatics of predicate logic.

The use of predicate lbgic discussed in this paper has some
features in common with that of Hayes[:gj, who arrives at a program
language by adding "control information" to axioms of logic in order
to obtain computationally favourable behaviour from a resolution

proof procedure.

The remainder of this paper is devoted to the application of
Kowalski's work to the simulation method of automatic programming,
which is applied to two problems: sorting a list and parsing a
string generated by a context-free grammar. The purpose of the
first exémple is to draw attention to the fact that an autonomous
resolution proof—procedure is capable of computationally acceptable
behaviour. This may be incompatible with widely-held opinions

on this point. To give an example of such an opinion, I quote
Hayes[ 9] :

"However, there is every evidence, both pracﬁical and
theoretical, that an autonomous resolution theorem-prover
will never be sufficiently powerful to cope with complex
problems. The practical evidence is abundant in the

literature on computational logic."

I cannot make the practical evidence mentioned here less abundant.
What I can do is to add some evidence for the contrary opinion

that autonomous resolution proof-procedures can be computationaliy

'useful,

In the cxample of parsing the use of predicate logic achieves
a degree of automatic programming that is beyond that of conventional
high-level program languages. In order to be able to observe the

computational behaviour of Kowalski's system, it has to be studied in
detail./
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detail. To make this paper self-contained, the system will be

expounded in full.

4. Predicate logic as a language for stating problems

A syntax for first-order predicate logic comprises a language
expressing sentences, an inference system consisting of axioms and
rules of inference, and a proof procedure relating the use of the
inferénce system to the sentence to be proved. The usual language
and inference system are found, for instance, in [11]. J. A.
Robinson's syntax for first-order predicate logic [23] is called
"machine-oriented" because it has important advantages for automatic
deduction. The most significant feature of Robinson's syntax is
the inference system, which contains no axioms and one rule of
inference: resolution. The language of Robinson's syntax is called
the "clausal form" of first-order predicate logic. For a helpful

exposition of machine-oriented logic the reader is referred to [21].

As an éxample of the several variations of language, consider
a sentence we shall meet later on. In the usual language it reads

as

Vx,y,z.Egv1,v2,v. Cone (v1,oons(x,vg),zZ/\Conc(v1,vz,v)/\Perm(y,V)]
:)'Perm(cons(x,y),z),

In clausal form the same sentence would read as

Perm(cons(x,y),z)Conc(v1,cons(x,vg),z)Conc(v1,v?wv) Perm(y,v).

Read disjunction (”or") between formulas; all vériables are understood
to be universally quantified, In the language of Kowalski's system
of first-order predicate logic, to be defined below, the same sentence

reads as

Perm(oons(x,y),z)'(;Conc(v1,cons(xvv2)gz),Conc(v AV 1;v),PeJr*n:l(y,v).

1702
That this is indeed the same sentence, is explained by the informal

semantics in section 4.2.

First-order predicate logic is an important tool in the method-
ology of the deductive sciences. A more recent application,
stimulated/
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stimulated by Robiﬁson's machine-oriented syntax and the constructivg
nature of its deductions, is to automatic problem-solving. The
application to automatic programming discussed in section 3 is an
example. The different 1anguages'of predicate logic are related

to its applications. In particular, Kowalski's system of language,
solution step, and solution procedure is suitable for the use of
predicate logic as a system for goal-oriented problem-solving.,

It is useful to give, as I will do here, a self-contained account

of the system sufficiently detailed to study its computational

behaviour on nontrivial examples.

As explained already, the system may be interpreted as first-
order predicate logic: the solution step is the resolution rule
of inference; solutions are proofs. It is the purpose of this
paper to argue that it may equally well be interpreted and used as
a high-level program language: the solution step is a generalized
subroutine call and the solution procedure is a strategy for
sequencing the execution of called -subroutines. While I want to be
. free to use either interpretation for pragmatic purposes, I prefer
to remain neutral towards them and to regard Kowalski's system

primarily as one for goal-oriented problem-solving.

4.1 Syntax of the language

A sentence is a set of clauses., A clause is an ordered pair

of sets of atomic formulas separated by a backward arrow:

An atomic formula has the form P(t1, oo tk) where P is a k-place

predicate symbol and the ti are terms. A term is either a variable

or an expression f(t ceaa tk), where f is a k-place function symbol

1 ’
and the ti are terms, For the sets of all predicate symbols, function

sets of symbols. - Constants areO-place-function symbols,

In the examples of this paper, predicate symbols are words
starting with a capital letter, Variables are lower-case letters,
possibly'indexed, near the end of the alphabet. Function symbols are
other/
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other identifiers consisting of lower case letters.

4.2 Semantics of the language

The meaning of a sentence C1, C2, cons Cn } is the conjuhction:

C, and C. and ... and C ..
1 2 n

The meaning of a clause B1, ceoy BIn <~ A1, ceny An containing

variables x{, ceny Xy is a universally quantified implication:

for all Xys oo X

B1 or ... Or Bm is implied by A1 and ... and An"

It may be helpful to have a special reading for a clause where

m=0 orn=0,

If n =0, read
for all Xys voes Xy B1 OT noa OT Bm"
If m = 0, read
for no Xy neey X, A1 and ... and A ,
or, equivalently, read
for all x1, vy Xk’ not A1 or ... or not Ano

If n =0 and'm = 0, write the null clause
a

and read it as denoting contradiction.

BExample

In Green's formulation of simulation (see figure 2) there must
be a set A of axioms containing a predicate symbol R with the
property that

A R(a,b)

if and only if the required program has to give output b for input a.
The task of obtaining the output x for given input a by simulation
is defined as proving
» A= gx. R(a,x),
where the proof constructs the x that exists, which is the required

output.

In Kowalski's system (to give an example of its use) this is stated

as/
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as the task of deriving the null.clause [ from the set of axioms

AU {6 R(a,x)}

4.3 The problem of sorting stated in the language

Let us use the language of Kowalski's system to express the
specification of a sorting algorithm. From a logical point of view
the specification is a logical theory in which some terms denote
lists and where the binary felation of "sortedness" is defined between

terms denoting lists.

The constants are the atoms 0,1,2, ... and the ist nil. There
is one function symbol, cons, which is used to construct lists as
foilows: whenever x is an atom and y is a list, then cons(x,y) is a
list again. Thus, for example,

cons(1, cons(8,cons(2,nil)) )
is a variable-free term of the theory and it denotes the list of 1
followed by 8 followed by 2. Note that there are terms which are

neither afoms nor lists, for instance: cons(1,8) and cons(ﬁil,nil),

Consider the following clauses:
A1, Ord(nil) €
A2. Ord(cons(x,nil) ) ¢
A3, Ord(cons(x,cons(y,z))ﬁ 6—Less(x,y),Ord(cons(y,z) )

Here Less(x,y) is true if and only if x and y are atoms and if they
are in a given total order among atoms. The meaning of Ord as
specified by EA1,A2,A3; is defined to be (see(ZS] for the semantics
of such definitions) the set of all variable-free terms 1 such that
the set of clauses E

(A Ay, Ay ord(1)3
derives the null clause. For instance,. nil, cons(nil,nil), cons(1,
cons(8,nil) ) are in the set (provided that Less(1,8) is true,
because the meaning of Ord depends on the meaning of Less), For
instance, cons(8,1) and cons(1,8) are not in it. In general, if 1
is an ordered list, then it is in the mééning of Ord., The converse
is not true; for instance, cons(nil,nil) is in the meaning of Ord,

although not a list as defined here.

In a similar way a predicate Perm (abbreviation of "permutation")

is defined:
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Ad.  Perm(nil,nil) &
A5.  Perm(cons(x,y).z) ¢ Cone (v, cons(x,v,)2) ,Cone(v, ,v,,v),

Perm(ygv)

Where Conc(x,y,z) is true if and only if x.y, and z are lists and z is
the result of concatenating x an y in that order. With these auxiliary

predicates the relation of sortedness is defined as follows:
A6. Sort(x,y) « Perm(x,y),0rd(y)
For‘this specification I claim that the set of clauses
{Axioms for Less and Conc}'kj {A1,..0,A69 G-Sort(l1,l2)§

derives the null clause if and only if

whenever 11 is a list, then so is 12 and l2 is the sorted version of 11.

It is possible to use a complete and correct automatic proof
precedure to sort an arbitrary list 1 by making it derive the null

clause from

{Axioms for Less and Conc}\J {A19mu09A6, ¢ Sort(lgy)}

The derivation has as side effect tﬁe construction of a y that is the
sorted version of 1. This is automatic programming in the simulation
mode, I do not know of a proof procedure that does any better with
these axioms than to generate a permutation of 1 until it is found to
violate orderedness, then to generate the next, and so on., Although
this is an "algorithm" in the strict sense of the word, it is so

extremely inefficient that it is not acceptable under any circumstances.

Although it would be universally agreed that this application of
simulation is a useless substitute for an efficient program, not
everybody would agree on the cause of its failure. Most work on
automatic theorem-proving prior to about 1970 seems to have assumed
that such a disappointing result could be cured by improvements in
search strategy or by elimination of redundancies in the search space.
The subseQucnt lack of success caused most workers in automatic problem-
solving to discard uniform proof~procedurés altogether and to emulate
the more pragmatically mofivated methods advocated by Minsky and Papert.

see, for instance, "Uniform Procedures vs, Heuristic Knowledge" in
’ - ? &

£207).
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In the examﬁle of sorting, however, there is no need fo take
recourse to such methods: the cause of the disappointang result
is the specification. In fact, I suspect that the clause A6 is.
such that no eutomatic theorem-prover whatever can elicit an acceptable
sorting algorithm from it. In the simulation mode of automatic

reduction-step: the problem of finding a sorted wversion of x is

reduced to that of finding a permutation that is also ordered.

But in this reduction none of the subproblems is such that it
can be solved independently of the other: instead of solving a sub-
problem once and for all, many trial solutions have to be generated
and tested for compatibility with trial solutions for the other
subproblem. This seems to be a general characteristic of those

reductions, like the one in A6, that fail the criterion:

1) . subproblems must be independent.
Furthermore, I suspect that checking whether v is a permutation of
x is not computationelly less complex than sorting x. This suggests
another criterion for effective problem reduction that the axioms
iA1,..«,Aé; . fail to meet:

2) the subproblems must be computationally less complex.

However, there is a well-known way of. defining scrtedness that
does satisfy criteria 1) and 2): it is according to the principle
of the quicksort algorithm [10] of C.A.R. Hoare. A specification

using this principle is as follows.

Bt. Sort(nil,nil) ¢

B2, Sort(cons(xpy)ﬁz) & Part(xyy,u1?u2)9Sort(u19v1)980rt(u29v2v,

Conc(v1,cons(x,v2),z) '

B3. Part(x,nil,nil,nil) <«

B4. Part(x,cons(y,z),cons(y'v1)9v2) & Less(ygx)QPart(xgzpv1,vg)

B5. Part(x,cons(y,z)9v1,cons(ygva) ) @'Gr(y, X ), Part(x9zpv1,vg)

v The meanings of Gr and Less (specified by axioms not shown here)

are complementary: Gr(x,y) true if and only if Less(x,y) is false.

As in A3, Less denotes a total order on the atoms. I claim that
iAxioms for Conc,Less, and(}@ \J %B1yn.",B5,(-Sort(l1,12)} R

derive the null clause it and only if



whenever 11 is a list, then so is 12, and 12 1s the sorted version qf
11“ In such a derivation, the effect of Part(x9y9u1,u2) is to
partition a list y into two lists: u, containing atoms not greater
than the atom x, and u, containing atoms greater than x. - This effect

is determined by the clauses B , and B

354 5°

The probiem reduction in B2 satisfies the criteria 1) and 2).
Simulation using a suitably modified SL-resolution theorem-prover
sorts an arbitrary input list as efficiently as one can do it in a
conventional. program language .using only procedure calls, This
should not be surprising: the specification not* only acts like a

program; it also reads like one,

Apart from the language discussed in this section, Kowalski's
system also has a solutien prosedure which is based on the SL-
resolution method. In order tc be able to explain why simulation
using the Specification§B1,.‘ogBSZ behaves st differently from what
one has Become used tb in resolution theorem-proving, I have no choice

but to expound in full the remaining part of Kewalski's system.

5. The solution procedure of Kowalski's system

‘5.1 Horn clauses

A Horn clause is a clause

B,,....B_ & A ,...,A
17 m 1 ’

n

where mg1. The following feur kinds of Hera oiauses all have a
logical interpretation, as explaired under the semantics of the
language. Here their interpretations are given a<cording to the pro-

gramming or problem-solving point of view (due tco Kowalski [j4?15]),

1070 _and m>0:
Y R

is interpreted as a procedure definition. The ccuclusion B is

1
interpreted as the procedure body. It consists of a set of procedure

interpreted as the procedure name. The antecedent A a,ﬂ,An is

calls.

Altérnativelyg/
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Alternatively, interpret the clause as a prescription for a
reduction to subproblems{ B is solved if each of the sub-problems
in the set {A1,.n.,An} is solved.

n=0:

B ¢

is interpreted as an assertion of fact. It can be interpreted as

a special kind of procedure which has an empty body. Alternatively,

interpret the clause as a problem already solved.

m = O:

< A19-"“:’An

is a goal statement; interpret it as a set of procedure calls to be

executed or as a set of problems to be solved. . If n = O, then the

goal statement is also a halt statement:. there are no more procedures

to be called, or problemgc to be solved.

Notibe fhat there are only Horn clauses in both specifications
{A1""’A6} énd {B1,...,B5§o With the procedural interpretation in
mind, the latter reads almost like a program in a procedure-oriented
language. An unfamiliar feature is the occurrence of a term like
cons(x,y) in a procedure name, instead of a variable. Another
unfamiliar feature is the occurrence of more than one procedure

definition with the same predicate symbol in the name.

It is no coincidence that only Horn clauses occur in the examples
A and B. Only such clauses will be used at all. Only such clauses
have a pragmatics according to the programming or problem-solving
interpretation. Indeed, only for Horn ciauses will the solution

procedure of Kowalski's system be defined. A specification will mean a set

of Horn ' clauses containing no goal statement. In the examples above

{A1’°‘°’A63 gnd iB1,...,B5§ are specifications.

The fact that most computer hardware is based on bi-stable switching
elements is the basis of the well—known’correspondence between computer
operations and the logical operations of propositional logic (logic
without variables): one of the stable states is interpreted as truth;
the other as falsity. Note that such a correspondence plays no role
in the programming interpretation of Horn clauses, which are a sub-
language of predicate logica The suitability of the 1ahguage for

computer/
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computer implementation is not based on some special relation between
hardware and predicate logic, but on its similarity with conventional

high-level program languages.

The difference between these correspondences between logic and
programming is similar to the difference noted by Minsky between two
possible ways of looking at a computer, In his introduction to

"Semantic Information Processing" [191 he writes:

"n .

... the dreadfully misleading set of concepts that people get when

" they are told (with the best intentions) that computers are nothing

" but assemblies of flip-flops; that their programs are really nothing
"but sequences of operations on binary numbers, and so on. While this
"is one useful viewpoint, it is equally correct to say that the

" computer is nothing but an assembly of symbol-association and process-
" controlling elements and that programs are nothing but networks of

"interlocking goal-formulating and means-ends evaluating processes.

I find it helpful to be neutral towards the choice between the
logic and the program interpretation of the language (though using
either when convenient) and to think of it as a language for stating
problems to be solved by the solution procedure of the system. In
the logic interpretation a solution i1s a refutation and the solution
procedure is a version of the SL-resolution proof procedure. In
the program inﬁerpretation a solution is a Eomputaficn and the

solution procedure is an interpreter,

5.2 The solution step

The solution procedure is explained by means of a solution step

which derives a new goal statement from an existing one in the following

way. There is a selection rule which selects a subgoal Ai in a goal

statement
A, evnoh, oA
A e L SR PRRTERE
If there is a clause
A é‘A’1,.,.,A'm

that "matches" the selected subgoal in the sense that there exists a
most/
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most general substitution @of térms for variables that makes Ai and

A' identical (see for instance [21l)g then the solution step derives

the goal statement

(—(A1,.M,A At seensh LA ...;An)e

i-1¢ m "Ti+1?
From a logical point of view this is a resolution step; other
interpretations are as a problem reduction step or as a replacement

of a procedure call by a procedure body.

It may happen that the predicate in the selected subgoal does
not occur in any procedure name. Such a predicate is assumed to
be primitive: its meaning is not a relation determined by the
specification, but it is computed by hardware or lower-level software.
In order to determine the next goal statement when the selected sub-
goal has a primitive predicate, one may act as if there were added
to the specification a set of variable-free assertions containing this.
predicate such that they constitute a listing of the meaning of the

primitive predicate. For instance, in the case of Less the set would

include the assertions:

Less(0,0) ¢ Less(1,1) € Less(2,2)€¢ ...
Less(0,1) € Less(1,2) ¢
Less(0,2) ¢ .o

e o6

I shall illustrate the soluticn step by means of the specification
§B1,...,B5§. Suppose we want to sort the Iist cons(1,cons(8,cons(2,nil)));
application of' the solution step to the goal statement (containing only

one subgoal for selection):
Bo. & Sort(cons(1,cons(8,cons(2,nil))),y)
and the only matching procedure

B,- Sort(cons(x,y),z) ¢~Part(x,y,u1¢u2), Sort (u1¢v1)Sorf(u2fv2),

Conc(v1,cons(£gv2)?z)

derives the goal statement
B6.~é—Part(1,cons(8,cons(2,hil)),u1,uz)QSort(u19v1),Sort(u2,V2),
'Conc(v1,cons(1,v2),y)

5.3 Selection rule and search strategy/
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5.3 Selection rule and search strategy

When the halt statement is derived, the problem is solved. For
an explanation of how to achieve such a derivation it is useful fo
define aljzgg of which the nodes are goal statements: the root is the
unique original goal statement (like BO\; a node n has successors n,,
ety (k =0,1,...), one for each procedure definition matching the

selected subgoal (and no other successors).

A solution is a path in the tree ending in a halt statement.
Besides the selection rule and the solution step, the soliution

procedure requires a search strategy for finding a halt statement in

the tree,

Let us now proceed from the goal statement B6 in the example,
To select anything but the first subgoal would be disastrous because
the other ones can be attained in many ways and, in this example, only
one is right, as will now be explained. Which subgoal to select
depends on the.number of solutiohs it has without taking the other
subgoals into account. For instaﬂce, Sort(ulgvd) is solved by any
of the infinitely many pairs for which the sortedness relation holds,
At this stage it is not yet known that only: one of these, (nil,nil),
is compatible with solutions to the other sub-problems, Later on,
more information becomes available transforming Sbrt(u

1,v,) into

Sort(nil,v1) which has one solution: wv,:=nil, independently of

1
solutions to other subproblems. Therefore, the selection rule

should prefer for selectim a subprcblem with only one solution. Ifr

there is a subpfoblem‘with no solution at all, that is a better selection

still: +the subtree with that problem as root node is empty.

For reasons to be explained below, the first two arguments of Less,
Gr, Part, and Conc, and the first argument of Sort, are designated to

be i-arguments. This allows the selection rule to be stated as

Select a subgoal of which

the i-arguments are variable-free coe (5.1)

In the programming interpretation this rule corresponds to the callihg

of a procedure only when its input parameters have received a value.

The/



- 20 =

The selection rule requirés’that the first subgoal of B6 be
replaced. The matching procedures are B4 and B5; the two descendants

of B6 in the tree are

B7% & Less(8,1),Part(1,coné(Qynil)yq,u2)980r+(00n3(89u1),vT),
T Sort(uz,v2)5COnc(v1gcons(19v2)9y).

B7b§'é-Gr(8,1),Part(1,conS(2,ni1),u1?ub)gsor#(u19v1)9

Sort(cons(89u2),v2)9Conc(v1,oons(1sz)gy)

In B7% the selected subgoal is to check Less{8,1). The predicate
Less is primitive; its meaning is suzh that the selected subgoal Less
(8,1) is impossible to achieve. Therefore, B7a éan be deleted,
because it has no descendants in the tree of goal-statements, and a

solution path, if one exists, must pass through B7bn

It seems feasible to go a step further: never generate B7a
or B7b at all and go directly from B6 to B7: which is B?b minus the
supposedly achieved subgoal Gr(891):

B7 é-Part(1,cons(2,ni1),u19u2)980rt(u19VA)QSort(cons(89u2)9v2),
Oonc(v1,cons(1gv2)gy)

We have the situation where one of the descendants of B6 has Less(891)

as selected subgoal, the other has Gr(8,1), and only one is achievable,

A conditional solution step makes the transition directly from B6 to

B7 using the information that just one of Less(y,x) and Gr(y,x ) is
provable, It corresponds to the execution of a conditional statement

in a program language.

If both the solution step and the conditional solution step are
available, then the tree of goal statements contains only a single path,
According to the programming interpretation the sentence {B1D,°°pB53
reads like & program for the quicksort algorithm written entirely with
procedures in a program language. Thefsu:nessive goal statements read
like the successive states of the stack of procedure c¢alls to be

executed,

The tree of goal statements contains one path; there is no
opportunity for search, For this example, an autoromous resSolution

proof/
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proof procedure achieves the same level of efficiency as a conventional
program language. This makes the behaviour of Kowalski's system a
notable exception to earlier experience with resolution proof procedures,
Still, the specification {Bl,ooopBég is not efficient by programming
 standards, because it is like a program in an Algol-like language
constrained to do everything by procedure call, This and other,

sources of inefficiency are within reach of optimization techniques

like those investigated by Darlington and Burstall [?]a

This favourable result was obtained by the use of a good proof
procedure and by some care in writing the specification. It is
useful to formulate a condition sufficient to guarantee that the tree
of goal statements contains only one path with the use of a computat-
ionally simple selection rule: select always the left-most subgcal,
This is analogous to the behaviour of an interpreter for conventional
program languages, which always executes the procedure call on top of -

the stack of calls to procedures awaiting execution.

To establish a sufficient condition for the ‘ree of goal
statements to have one path when the leftimost subgoal is always
selected, effect a partition in the set of argumeuts of each predicate

P into a set of input-arguments and a set of cutput-arguments which

satisfies the following three conditinns,

1) Whenever the selected subgoal has P as predicate and
all input arguments are variable-frese, then the goal-

statement has only one descendant,

To verify whether this is true for a given partiﬁionp‘distinguish two
cases., Suppose P is a nonprimitive predicate, In this case,
ascertain that the subgoal matches one procedure name only, or else
that a conditional solution step is available to ensure that there be
only one descendant, Note that it depends indeed cn input-arguments
‘being variable-free whether a selected subgoal matches only one
procedure name., For instance, if the first argument of a subgoal
Sort(ooo,,..) is variable-free, then it matches at most one of Sort(ﬁ119
nil) (the name in B1) and Sort(cons(x,y),z) (the name in BQ)° If it

is a variable, then it matches both,

Suppose/



Suppos2 P is a primitive prsedicate. The meaning cof the predicate
is a relaticn between variable-free ferms, It depends on this .
relation whether variable-free input-argumeri*s uaniquely determine the
output-arguments, which is necessary for such a geal statement to
have one.descendanfg For 1instsnce, if the first two arguments of a
subgoal Conc(ooogonopono) are variable-free, then the relation
uniquely determines the third argument. Tf the flrst two arguments
are variables, then this 1s in general nct the case and there would be

more than one descendant.

Note that the i1-arguments of the seletion rule (501) are input-
arguments in this sense. For the tre= of goal statements to have
one path 1t is sufficient to ensure ‘hat the input arguments of the
selected subgoal are always variable-free, Ir remains to formulate

conditions under which the leftmes® subgnal is always irn this state,

2) The calls of each prccedure body can be ordered in such
2 way as to be sequenfial, that is, for every procedure call
of_the body, each variable in an input~argument occurs in
an argument of a preceding procedure call or in an input

argument of the procedure name,

If each procedure hsody 18 sequential, and if tne input-arguments
of the initiai goal atatement sre varisbie-fres, ther the leftmost
subgoal of every goal <tatement ras 1's input arguments variable-free,

provided that

3) Every subgoal 13 such that, when 1t ig achieved, the
corresponding subtstitution causes variakie-free terms
to be substituted for a variatle occurring in an oubpuk

argumert, of the subgeal,

N

This conditicn 1s noat difficult teo verify wnen, as 1n {B1ﬂyeu,B,}
i D

there is no mutual recursicn, For instance, to verify . that a subgeoal
containing Scrt has the preoperty 3), sssume that all arguments in the
body of B? are variable-free and verity that this alsc nolds for z in
the name of BZQ To conclude that Sort% has property 3)_is an example
of circuiar reasoning because of the recursive nature of B

20
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However. the caircularity 1s not vieicus because “he oufpuf arguments

5

e

of the calls to Sort in B, represent lis*s tnar are at leas* one

atom sherter than the cne i1a the precedure rame,

6. A top-down parser for_ unrestricted coniex‘-free languages

The problem of parsing csn ke formulated in such a way that
parse trees are represented by terms and then 'he pr-iiem becomes
one of simulation with cutpit a parsge tree, However, in this example

-
1

I will view parsing as a task where *‘he required answer 1s oniy a "yes"

or a "

no", indicating whether the parsed string is grammatical, For
the application of automatic programming ‘o such a task I will use
Green's mode of "checking" (figure 2) end ottain the parse from the
path in the tree of goal statemen’s from the root *o the halt statement,
The example witl show that the required specificaticen has to contain
only a straightforward franscription of & contex®-fres grammar and a
representation of the etring *o a'low Kewalski’s system to simulate

a reasonable top-down parsing algorlrthm,

This is a levei <f automat.. programming teyond that provided
by a conventional language, Of course, programs exist that accept
aﬁ arbi*rary'contexﬂ~free’grammar and use 1t to parse straings, but
such programs will not de anything else, Here *he pregram that
accepts the grammar =nd parses sftrings 1s the sciuti n pro-edure of
Kowalski's sys*tem, whi-h 18 generallv apglicable as un 1n‘erpreter

for a proredure-aricentsd progrom [Anguag-,

The specificaticn of tne parsing pr-blem has as 1ndividual
constants a number ¢f "markers" whicn 1dentify the pesiticns in the
input siring between successive termina: svmbols, Suppcse the input

string s

{u = {L)+ a%}

where markerse Ml neoensd are 1nserted s Tlowas

¢
-+,
(]

.0‘11‘52:3%41’5+687}9}f’ | eee(601)

The/
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The foliowing clauses specify the irnput string

ct, $(0.1) < : CE. +(5,6) €
c2. a(1,2) € C7, al6.,7)€
c3. =(2,3) « 8, }(7.8)«
ca. (3,4) ¢ | co. 3(8,9) €«

c5, b(4,5)&

These are all procedures with a name tu* no boay, The terminal
symbols of the string (6.1) are used as predicate symbols, The
meaning of any ofbthese predicates is that® the markers constituting
their arguments are ccnnected in the specified way: €4, for example,

states that "{ " connects 3 and 4.

The string is to be parsed with the foilcwing grammar (written
in conventional nota ton):

m»R}{BS

R->E = B ceel€e2)

E—>a|b]| {E+ E

This example 1s taken from Kz .th's ftuteria: arficle f:z] on top-down

parsing. The grammar gererates a simple form cf "Boolean expression”,

The follcwing clauses are a systematic transcription of the grammar:

C10. B(x,y)é-R(x,y)

Ctr, B(x.y) e« {(x?xi)ﬁB(x],xg)? }(x2¢y)
Ci2. R(XTY)<>13(X9XI), = (X19X2), E(x..v)
C135. B(x y)(— a(x?y)

c14. E(x,y)e blx.y)
C15. E(XPY)f’ {(X,X1), E(Xlzuxé)y + (Xzﬂ}‘t})w E<X3J(4)" }(th“y)
Note that alternative productions from the same non-terminal symbol

transcribe to different procedures with the same name,

The task of parsing the string (b.!) is expressed by the goal

statement

€O, <« B(0,9)

which becomes the rootl of the tree of gecal statements, The string is in

the language defincd by the grammar iff the tree contuins a halt statement,

The/
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The parse is obtained by tracing the path from the root to the halt

statement and by noting at each step which procedure was applied.

A good selection rule for problems like this is the following.
If any subgoal is present with a predicate denoting a terminal symbol
with at least one argument a constant, then select this. (Such a
subgoal is merely to check whether a terminal symbol occurs in a
specified place). Otherwise, select any subgoal, preferring one with

a greater number of constant arguments,

This selection rule, together with the method for representing
production rules and strings as clauses, is all that is required to
apply Kowalski's system,té the task of parsing strings from context-
free languages‘from the top down. It does not seem too ambitious
to envisage automatic generation of the selection rule from the
general principle that subgoals that are seen to have fewer solution
possibilities should be attempted first. The preference for terminal
symbols in'the above selection rule then follows from inspection of
101,...,015} . The preference for subgoals having more variable-
free arguments is a generally useful heuristic indicating fewer

solution possibilities.

In the quicksort example I did not discuss a search strategy for

the tree of goal statements, because it consists of a single path.

In the parsing examples the search strateéy matters: the tree has two
substantial branches. Of course, if a solution exists, then there
exists a finite path ending in a halt statement, and this path is
found by a breadth—first search of the tree, What makes Kowalski's ;
system work so well is that the tree is drastically pruned by deleting
all subgoals which can be shown to be unattainable. For instance,

in this example a parser must ultimately: discover that a successful
parse cannot begin with an application of the production rule B~> Ry
The subtrce of figure 4 represents the attempt to find such a parse.

It turns out to be necessary to prove that +(2,v ), which is im-

51
possible simply because the string has a "=" in that place and not a

I|+" o
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< B(Oyg)
\\ v
& 2( N 1,) B(ua[ ,U- (uzy 9) ‘\ZR(O’Q)

(see figure 4 for continuation

é-B(1 u } u ’9 of this subtree)

|

« B(1,8) :

é~T(1,8) <$(1,u ]) cee

<« E(1 y = (u12,u22), E(u22f8)

<all,u,.), = (u12,u22) E(ugz, ‘"2—b(1,u]é),... <%{§1,u]2),...

C <= =(2,u55), Eu ()2,8)

«E(3,8)
e
(5.,.) (i5805) a5 BT €5,8) €

<1052, Bluygm,5), + (u5us5), Blugs,u,5), 800,587 €a(3,8) ¢ (3,8)

|
< E(4?u23) 9+(u23!u33) ’ E(u33 ,U.43> ’ _ﬁ‘lgz’B)

< B4,u,,), +Huys,us5), B(uzs,7)

-é—b(47u25), +(u23,u33), E(u33,7) "19-a(4,u23),.°. <« §(4, )y .o

<~+§5, 55) E(u 3,7)

(—Elim\
<al6,7) 56,7 < 3(6,u, ) ,uen

o147
O
Figure 3,  The tree ol goal statements generated when!parsing the

string (6.1) with the grammar {6.2). Goal statements
with a doubly underlined subgoal have no successor.

Singly underlined subgoals are those selected.
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«B(0,9)

<5 (0,u,), Bly, RSN }(\%,9)

«r(0,9
for contlnuatlon see figure 3

|

(‘EL-Q‘-!«-) = (V1 9v2)’ E(V259') ‘ '
’oct

< -(O,V )9 E(V11,V21), + V21, 7] v ,;\f ),}(\}'4‘1 ,V1)€-a(o v ),...

\ éb(O,v!),...

é—E(l‘ ,V% ’ + (V21 ,V31) E<V31 ,V41) }(V41 ,V )9 o

QM_,‘_), + (v21,v31), E(V31’v41)’}(v41 "V Jeb(15val),...<-§___§_‘l___,_yﬁ?£2,...

«+(2,v5,); B(vg7y1) 3(vgqovy)sees

The unsuccessful branch of the tree of goal statements
shown in figure 3. “ '

Figure 4.
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In figures 3 and 4 failures are shown by a double underlining.

It is apparent that these failures severely reduce the size of the
tree of goal statements. If even a single subgoal is unattainable
the entire goal statement can be deleted because all subgoals must

be successful. Moreover, if all descendants of a goal statement have
been deleted, then it may itself be deleted. Because of these two '
rules, the failure of the subgoal +(2,v31) triggers a progressive
collapse which erases the entire subtree of figure 4 except for its
root B(0,9).

This representation of the parsing problem was invented by
Colmerauer and Kowalski in unpublished work done at the University of
Marseille in the summer of 1971. It was suggested by Colmerauer's
parsing method using "Q-systems" [2]. Subsequent work by Kowalski
on "connection graphs" [13] 1lifts the restriction to top-down parsing
inherent in the goal-oriented nature of the solution procedure
described here. When using connection graphs, the solution step
would have no bias towards top-down or bottom-up and it could alternate

between the two strategies in an advantageous waye

A more elaborate investigation than the one in this example has
been reported by Minker and Vanderbrugh [18] . They described two
methods for representing formal grammars in first-order predicate logic
using Horn clauses only and in each case uaed as a parser a resolution
proof procedure, exploiting the computational advantages of Horn
clauses. One of their methods, the "derivation sequence representation"
leads to the simulation of a.top-down parser, whereas the other
simulates bottom-up parsing. Compared with the derivation sequence
representation the method of Colmerauer and Kowalski has the advantage
that the notions of derivation in logic and in the formal grammar
almost/
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almost coincide. As a result, the solution step in Kowalski's
system is a derivation step for the formal grammar, as shown in the
example. In the derivation sequence representation there is a clause

for each possible form of derivation step.
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9. Epilogue

Kowalski's system described in this paper is in fact similar to
PROLOG, a program language implemented in the University of Marseille
by Colmerauer and his colleagues 1{2). Like Kowalski's system, PROLOG
admits only Horn clauses. Unlike Kowalski's syétem, PROLOG always
attempts subgoals from left to right in the program text, thus giving

a depth-first backtracking search of the tree of goal statements.

Several ambitious programming tasks have been accomplished in
PROLOG., These include a natural language understanding system 1),
a formula—manipulatipn system 3), and a STRIPS-style problem-solver 4).
The first version of PROLOG was implemented in ALGOL-W; the next

’version has been coded in FORTRAN, resulting in a programming system
which may well be competitive in use of machine time for tasks of
the type mentioned above., This is suggested by the fact that for
the examples tried, Warren's problem-solver is faster than the
original STRIPS system., A more important advantage of first-order
predicate logic as a high-level pfogram language is suggested by the
fact that Warren's problem-solver required about one man-week of

programming. time,
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