
Ti tIe:

Author:

Abstract

SCHOOL OF ARTIFICIAL INTELLIGENCE

UNIVERSITY OF EDINBURGH

Memorandum: MIP-R-106

Date: May, 1974.

First order predicate logic as a high-level program
language

M. H. van Emden

This paper presents an argument in support of the thesis that

first-order predicate logic would be a useful next step in the

development towards higher-level program languages. The argument

is conducted by giving a description of Kowalski's system of logic

which is sufficiently detailed to ,investigate its computational

behaviour in the two examples discussed: a version of the "quicksort"

algorithm and a top-down parser for context-free languages •

.. '. Keywords

Program language, specification langu,age, automatic programming,
resolution theorem-proving.

- 1 -

CONTENTS

O. Introduction

1. The r61e of specification language in automatic programming

2. Two aspects of algorithm specification

3. Contributions of Green and of Kowalski

4. Predicate logic as a language for stating problems

4.1 Synbx of tho language

4.2 Semantics of the language

4.3 The problem of sorting stated in the language

5. Kowalski's solution procedure for the language

5.1 Horn clauses

5.2 The solution step

5.3 Selection rule and search strategy

6. A ,top-down parser for unrestricted context-free languages

7. Acknowledgments

8. References to the literature

9. Epilogue

- 2 -

o. Introductio.n

Kowalski has argued that predicate logic is a language useful

for stating problems and that recent developments in resolution:

proof procedures make it possible for problems stated thus to be

solved automatically. This is of interest to those concerned with

computer-aided problem-solving, which encompasses not only conventional

programming, but also the new applications being studied in

Ar.tificial Intelligence and elsewhere in computer science research.

The pres.ent paper is intended as a supplement to Kowalski1s

argumentsV4, 15]. It is useful to conduct an argument from the

point of view of the developm'9nt of program languages as proceeding

from the low-level to the high-level" I will first argue that each

higher level of program language represents a step towards "automatic

programming", a level where programs become more like descriptive

specifications of algorithms and less like sequences of commands.

Using a' formulation of automatic programming due to Green (8], I

show that predicate logic, in Kowalski's interpretation as a system

for stating and solving problems, is a possible and useful next step

in the development of program languages.

The argument depends critically on some details of the proof

procedure used. In the early experience of resolution theorem­

proving, proofs are. usually obtained only·after searching a 1 frequently

large, search space. The computations performed by an interpreter

for predicate logic programs would be proofs from a logical point of

vielv. It is, therefore, important to investigate the computational

behaviour of Kowalskiissystem. In particular, it is of decisive

importance that such an interpreter will not have to search in situations

where a conventional version of the same program would not search.

The contributions of this paper supporting i,he feasibiE ty of

first-order predicate logic as a high-level program language are the

following:

1. The proof procedure is stifficiently preCisely defined to study its

computational behaviour.

2. The examples on which computational behaviour is investigated have

some interest in programming: a version of the "quicksort" algorithm

and a' top-down parser for context-free languages.

- 3 -

1. The rSle of sJ2ccifica hon l,a'n@.§ge in au toma tic pr.Qgrammii1gb

Automatic programming means the automation of some kind of

program writing. To take a specific example~ think of writing PL-1

programs, a profitable target indeed of automation in programming.

The result of successful automation would be a machine

machine") writing PL-1 (the ta:rg§.:t. lan@f!g§.) programs.

a "PL-1

Such a machine

would stilI have to be told, no matter how automatic otherwise, what

the product of its activity is expected to do, for instance in the

form of a specifica hon of input-output behaviour. Machines be'ing

,-1ha t they are (for the time being), such a specification would have

to be written in a formal language (sJ2ecificatiou languagel.

This is reminiscent of the existing situation where the writing

of machine-code programs has been aut6mated. There exist machines

which accept a "specification" in a formal language (for instance PL-1)

and produce machine-code programs tha.t are expected to comply with

these specifications. This shows that9 if understood in a certain

way, automatic programming has been going on for a long time already.

Its purpose is to produce with less effort better programs. Would

a PL-1 machine achieve any progress towards this goal?

The PL-1 machine would operate in an environment (schematically

.~', shown in figure 1) ,w'hich would only make sense if specifications

can be better written in specification lan'guage than in PL-·l: the

.PL-1 machine would act as an interface between spe~ification

language and machine code. However, the PL-l language was intended

(insofar as it developed pur:posefully at all) as an interface

between a human programmer and machine code; why should it be

adopted for the other purpose? To do so would be in the same spirit

as designing the PL-1 m-achine to hold a pencil and to write characters

on paper.

input

- 4 -

[]
uman

problem
solver

specification of
input-output relation

f"PL=1
~:hine"

PL-1 program

compiler

machine-code program

__ ~;>~~ompute:J~ output

figure 1: Environment of the "PL-l machine"

Either one needs 11 language intermediate between specification

language and machine code and then it $eems better not to adopt PL-1 ,

but to start with a clean slate. Or one does not need any inter-

mediate language and PL-1 is itself a candidate specification

language. Again, it seems better to ~tart from scratch and to

look for a language especially ~uited for this purpose. These

considerations apply not only. to PL-1 but also to other conventional

program languageso In either case automatic programming will not

turn out to be. an unprecedented innovation but a further step

towards the use of more powerful programming tools as assemblers 9

interpreters, and compilers have been in the past.

- 5 -

2. Two aspects of algorithill~~cificatiQQ

The preceding observations suggest that there is no clear-cut

distinction between a specification language for automatic programming

and a higher-level program language. 'Phey also suggest that any

step towards automatic programming will be one in an ongoing evolution

towards more powerful tools for computer-aided problem-solving.

Indeed, the pioneers in compiler design already flew the banner of

Automatic Programming [11.
Although no clear-cut distinctions will emerge~ it is useful

to compare two aspects of algorithm specification: the ~~rative

aspect is typical for the lower level of programming as is the

descriptive aspect for the higher level. In a machine-code program

it is spelled out how things are done, but it is always very hard

to see without additional explanations wool is being done. This is

an extreme case of an imperative specification of an algorithm. At

the other extreme, in a specification it is only explained what is

to be done .and it is the problem of automatic programming to convert

this into commands ~aying how.

Strictly speaking, a language like PL-1 is completely imperative:

every statement corresponds to commands to be executed. However,

the value of such a language li.es in, th l9 fact that in a well-written

program it is possible to see without addi.tional explanations what

is being done: such a program has descriptive value as well as

imperative value. Some of the imperative aspects have disappeared

from the program, like the details of storage allocation and the commands

involved in procedure invocation. The ABSYS language [4 9 6 1 71 is an

interesting experiment that allows algorithms to be specified in a

more descriptive manner.

Predicate logic is usually regarded as a purely descriptive

language: at most able to express what is to be done by a program

and not how to do it.Yet~ with respect to a given proof procedure,

a specification in logic has implications for the imperative aspect, as

will become clear by comparing with each other the two versions of the

sorting 'example below.

Al though the descriptive and imperative aspects of algorithm

specification may be hard to disentangle 9 I think the distinction is

useful/

- 6-,

useful for characterizing what consti tu tes a higher level program

language: one that has less commitment to the imperative aspects

of the algorithms to be specified and, by being more descriptive,

is easier to write in and to understand for the human prob1em-solver.

3. Contri butions of Green and of Kmv8.1ski

Green [8] has given & vf'ry u2ef'J.l deflni tlOn of four different.

tasks in automatic programming by representinf, them <.18 problems

in automatic deduction. He specified the input-output behaviour

of the required program as a set A of axioms in first-order predicate

logic containing a predicate symbol R such tha: A 1= R (s, t)

(A logically implies R(s,t)) if and only if the program is to give

output t for input s. Thus~ A defines (wit.h respect to the predicate

symbol R) a relation in the mat.hematical sense be~ween input.s and

outputs.

The generality of relations (as compared to functions as usually

st.udied in rnrlthcmatics) is suHable here: the required program~ as

a map from inputs to outputs, need not be total (an output may not

exist for some inputs) and it need not be determinate (an input may

be followed by any of more than one possible outputs). EYen if the

program computes a total function, it: is advantageous to specify

it as a relation.

synthesis as tasks in Qutomatin programming. He shows that an

automatic theorem-prover can in principle accomplish these (given a

suitable set of axioms, not necessarily the same for each task) in

the process of proving a theorem of a particular form. Figure 2

shmvs hOl'1 this form de termines whi eh of the four tasks is to be carried

out.

- 7-

Form of theorem to be proved Possible answers Task

--+--------------

R(a,b) yes checking
no

3: x . R(a,x) yes? x b simulation
no

vx.R(x,g (x)) yes verification
no, x - c (of program g)

VX .3:Y. R(x,y) yes,y f(x) synthesis
no~ x == c (of program f)

figure. 2: Green! s tasks in au toma tie programming

Note in this figure that only synthesis corresponds to automatic

programming as described in section 10 The specification language

is predicate logic and f is the synthesised program in a target

language embodied in the function symbols of the speClfying axioms.

Synthesis appears to be a difficult problem. Before attacklng it~

let us pause and consider whether there is not a way around.

To find such away 9 we should ask: w'ha t is the purpose of a

program, and can it not be achieved in another way? The answer is,

a program is to cause c'omputations to be done automatically on a

computer and, yes~ it can be done in another way: by simulation.

As we see in figure 2, for given input a~ the automatie theorem-prover

will produce the output b that would have been generated by the program

synthesised from the axioms A. But th~n9 why do we need the synthesised

program if, for nny i npu t, we c.'m ge t by simula tion the requlred au tpu t

without the program?

This possibility is at least worth investigating 9 although at

the time of Green's work it did not seem to be the most promising

approach. In order to make simulation a practically interesting

possibility, both development of theorem-proving technique and an

increased understanding of the prag'lrla tics of predi ca te logic were needed.

- 8 -

These requirements have been met ln the meantime. The SL-resolution

theorem-prover of Kowalski a.nd Kuehner [161, or each of several

related proof-procedures [22~ 17], can be adapted to act like a

program language interpreter for logic axioms in the form of "Horn-

clauses". The programming interpretation of Horn clauses is

Kowalski IS contri bu tion [14] to the pragmatics of predicate logic n

The use of predicate logic discussed in this paper has some

features in common with that of Hayes [9J. who arrives at a program

language by, adding "control information" to axioms of logic in order

to obtain computationally favourable behaviour from a resolution

proof procedure.

The remainder of this paper is devoted to the application of

KO'I'1alski's work to the simulation method of au tomatic programming,

which is applied to hvo problems: sorting a lis!:' and parSlng a

string generated by a context-free grammar. The purpose of the

first example is to draw attention to the fae t tha i; an autonomous

resolution proof-procedure is capable of computationally acceptable

behaviour. This may be incompatible with widely-held opinions

on this point.

Hayes[9J:

To give an example of such an opinion~ I quote

"However, there is every eVldence, bo th prac tical and

th~oretical, that an autonomous resolution theorem-prover

wiil neVer be suffiCiently powerful to cope with complex

problems. The practical evidence is abundant in the

literature on computational logic."

I cannot Dk'lke the practical evidence mentioned here less abundant.

\'1ha t I can do is to add some evidence for, the con trary opinion

that autonomous resolution proof-procedures can be comput.ationally

useful.

In tho oX::lmple of pm'sing the use 9f predicate 10gic achieves

a degree of automatic programming that is beyond that" of conventional

high-level program languages. In order to be able to observe the

computational behaviour of Kowalski's system~ it has to be studied in

detai1./

- 9-

detni1. To make this paper self-contained, the system will be

expounded in full.

4. Predicate logic as a laDEg~for sta ting_J2roblems

A syntax for first-order predlcate)Og1C comprises a language

expressing sentences, an inference system consisting of axioms and

rules of inference, and a proof procedure reIa ting the use of the

inference system to the sentence to be proved, The usual language

and inference system are found, for instance, in [11J. J" A.

Robinso~ts syntax for first-order predlcate logic [23J is called

"machine-oriented" because it has important advantages for automatic

deduction. The most significant feature of Robinson's syntax is

the inference system~ which contains no axioms and one rule of

inference: resolution. The language of Robinson's syntax is called

the "clausal form" of fi.rst-order predicate logic. For a helpful

exposi ti,on of machine-oriented logic the reader is referred to [211.

As an example of the several variations of language ~ consider

a sentence we shall meet later on. In the usual 1anguage it reads

as

VX , Y , z. [:IT v 1 ,v 2 ' v. Cone (v1 ~cons(x,v2) ,z)I\Conc(v1 ?v2 ,v)!\perm(y,v)]

:;:, Perm(cons(x.y) • z).

In clausal form the same sentence would read as

Perm(cons(x,y),z)Conc(v1 ,cons(x,v2),z)Conc(v1 ,v2 ,lr) Perm(y,v).

Read disjunction (" or") betw~en formulas; all var.iables are understood

to be universally quantified. In the language of Kowalski's system

of first-order predicate logic, to be defined below, the same sentence

reads as

Perm(cons(x,y) ,z) ~Conc(v1 ,cons(xov2) ,z) ~Conc(v1 ~v2.v),Perm(y,v).

That this is indeed the same sentence, is explained by the informal

semantics in section 4.2.

First-order predicate logic is an important tool in the method-

ology of the deductive sciences. A more recent appl.ication9

stimulated/

-10 -

stimulated. by Robinson's machine-oriented syntax and the constructive

nature of its deductions, is to automatIc problem-solving" The

application to automatic programming discussed in section 3 is an

example. The different languages of predicate logic are related

to its applications. In particular~ Kowalski's system of language,

solution step, and solution procedure is suitable for the u.se of

predicate logic as a system for goal-oriented problem-solving.

It is useful to give, as I will do here, a self-contained account

of the system sufficiently detailed to study its computat.ional

behaviour on nontrivial examples.

As explained already, the system may be inter.preted as first­

order predicate logic: the solution step is the resolution rule

of inference; solutions are proofs. It is the purpose of this

paper to argue that it may equally well be interpreted and used as

a high-level program language: the solution, step is a generalized

subroutine call and the .solution procedure is a strategy for

sequencing the execution of called·subroutines. While I want to be

free to use either interpretation for pragmatic purposes 9 I prefer

to remain neutral towards them and to regard Kowalski's system

primarily as one' for goal-orient.ed problem-solving.

'4. 1 .exaiax of the l.§:ngQ-gg~

A ~~~ is a set of clauses. A .£J;au.§g is an ordered pair

of sets of atomic formulas separated by a backward arrow:

An atomic formul~ has the fo~m p(t1 , G"O, t k) where P is a k-place

predicate symbol and the t. are terms" A term is either a variable
1 ----,

or an expression f(t 1 , .0"' tk), where f is a k-place function symbol

and the \ are terms. For the sets of all ..Qred~ .§,ymbols 9 function

symbols, .and .Y.§1:ia:Qles. we are free to choose any three mutually disjoint

sets of symbols. Constants a:reO-place,function symbols.

In the examples of this paper, predicate symbols are words

starting with a capital letter. Variables are lower-case letters,

possibly indexed, near the end of the alphabet. Function symbols are

other/

other. identifiers consisting of lower case letters.

4.2 Semantics of th2 lang1!,~2,

The meaning of a sentence fc 1, C2 , •• "' cn 1 is the conjunction:

C 1 and C 2 and . n nand C xi •

The meaning of a clause B1 , •• ,,' Bm (- A1 • "n, An containing

variables x1 ' ',., xk is a ·universally quantified implication:

for all x1 ' .. n, xk '

B1 or , •• or Bm is implied by A1 and ,n" and Ann

It may be helpful to have a special reading for a clause where

m = ° or n = 0.

If n = 0, read

for all x1 ' , •• , xk ' B1 or nne or Bm•

If m = 0, read

·for no x1 ' " •• , xk ' A1 and ••• and An~

or, equivalently, read

for all x1 ' "n, xk ' not A1 or •• n or not A •
n

If n = ° and·m = 0, 1vri te the null clause.

o
and read it as denoting contradictionn

Example

In Green's formulation of simulation (see figure 2) there must

be a set A of axioms contain~ng a predicate symbol R with the

property that

At=R(a,b)

if and only if the required program has to give output bfor input an

The task of obtaining the output x for given input a by simulation

is defined as proving

A t= r>!Xn R(a,x),

where the proof constructs .the x that exists, which is the required

output.

In Kowalski's system (to give an example of its use) this is stated

as/

- 12 .-

as the task of deriving the null, clause Cl from the set of axioms

A U t~ R(a,x)l

4.3 The problem of sortin&,...,§tnted iQ 1.hLlang:Bage

Let us use the language of Kowalski's system to express the

specification of a sorting algorithm. From a logical point of view

the specification is a logical theory in which some terms denote

lists and where the binary relat.ion of "sortedness" is defined between

terms denoting lists.

The constants are the atoms 0,1,2" and the li s t nil. There

is one function symbol, cons, which is used to construct lists as

follows: whenever x is an atom and y is a list, then cons(x,y) is a

list again. Thus, for example,

cons(1, cons(8,cons(2,nil)))

is a variable-free term of the theory and it denotes the list of 1

followed by S followed by 20 Note that there are terms which are

neither atoms nor lists, for instance: cons(1,S) and cons(riil,nil).

Consider the follovring clauses:

A 1 • 0 I'd (nil) (;-

A2. Ord(cons(x,nil)) ~

A3. Ord(cons(x,cons(y, z")}) <- 1ess(x,y) ,Ord(cons(y, z"))

Here 1ess(x,y) is true if and only if x and yare atoms and if they

are in a given total order among a toms. 'rhe meaning of Ord as

specified by ~Al ,A2 ,A31 is defined to be (see C 5) for the semantics

of such definitions) the set of all variable-free terms 1 such that

the set of clauses

t A1 ' A2 ,A3 ,(- Ord(l)}

derives the null clause. For instance, nil, cons(nil,nil), cons(1,

cons(S,nil)) are in the set (provided that 1ess(1~S) is true,

because the meaning of Ord depends on the meaning of 1ess). For

instance, cons(S,1) and cons(1 ,S) are not in it. In general, if I
" is an ordered list, then it is in the meaning of Ordo The converse

is not true; for instance, cons(nil,nil) is in the meaning of Ord,.

although not a list as defined here.

In a similq.r way a predicate Perm (abbreviation of "permutation")

is defined:

- 13 -

A4. Perm(nil, nil) '"

A5. Perm(cons(x,y) ~z) f Conc(vf' cons(x, v 2~z) ,Cone(v1 ' "'2' v) ,

Perm(Y9 v)

Where Conc(x,y,z) is true if and only if x~y, and z are lists and z is

the result of concatenating xan y in that order. With these auxiliary

predicates the relation of sortedness is defined as follows:

A6. Sort(x,y) 0{- Perm(x,y),Ord(y)

For this specification I claim that the set of clauses

{Axioms for Less and Conc}U ~A11 .. o,A6,,~ Sort(11,l2)~

derives t.he null clause if and only if

whenever 11 is a list, then so is 12 and 12 is the 'sorted version of 11 ,

It is possible to use a complete and correct automatic proof

procedure to sort an arbitrary list 1 by making it derive the null

clause from

The derivation has as ,side effect the construction of a y that is the

sorted version of 1. This is automatic programming in the simulation

mode. I do not know of a proof procedure that does any better with

these axioms than to generate a permutation of 1 until it is found to

ITiolate orderedness, then to generate the next~ and so on~ Although

this is an "algorithm" in the strict sense o'f the vrord ~ it is so

extremely inefficient that it is not acceptable under any circumstances.

Although it would be universally agreed that this application of

simulation is a useless substitute for an efficient program, not

everybody would agree on the cause of its failure. Most work on

automatic theorem-proving prior to about 1970 seems to have assumed

that such a disappointing result could be cured by improvements in

search strategy or by elimination of redundancies in the search space.

The subsequent lack of success caused most workers in automatic problem,-
"

solving to discard uniform proof-procedures altogether and to emUlate

the more pragmatically motivated methods advocated by Minsky and Papert..

(see, for instance, "Uniform Procedures vs. Heuristic Knowledge" in

[20J) •

.- 14 -

In the example of sorting, 'however~ there is no need to take

recourse to such methods: the cause of the disappointIng result

is the specification. In fact~ I suspect tllat the clause A6 is,

such that no au toma tic theorem-prover 1-J'ha tever can elicit an acceptable

sorting algorithm from it~ In the simulation mode of automatic

programming this clause acts as t.he prescription of [L .E!.Q!?l~m­

reduction-step: the problem of finding a sortedversi,on of x is

reduced to that of finding a permutation that is also ordered.

But in this reduction none of ,the subproblems is such that it

can be solved independently of the other: inl:'.tead of solving a sub­

problem once and for all, many trial solutions have to be generated

and tested for compatibility with trial solutions for the other

subproblem. This seems to be a general characteristic of those

reductions, like the one in A6, that fail the ciiterion:

1) . subproblems must be independent"

Furthermore, I suspect that checking whetber y is a permutation of

x is not computationally less complex than sorting x. This suggests

another criterion for eff.ective problem reduction that the axioms

l A1 ' •.• ,A61 . fail to meet:

2) the subproblems must be computationally ,less complex.

However, there is a well-known 1-lay of. defInjng sor.iedness that

does satisfy criteria 1) and 2): it is aecor-ding to the princ:lple

of the quicksort algorithm ClO) of CoAnRo Hoare, A specification

using this principle. is as follows.

B1. Sort(nil,nil) (_.

B2. Sort(cons(x:9y) ~z) '.(- Part(x'YiU19u2)~Sor+,(u19v1) ~Sort(u29v2)'

Conc(v1 ~cons(X',v2)'z)

B3. Part(x,nil~nil,nil) ~

B4. Part(x,cons(y ,z) ,cons(y,v1) 9'V2) f- Less(y~x) ~Part(x9z~v1 ,v2)

B5. Part(x,cons(y,z) yV1 ~conS(Y9V)) ~. Gr(y, x)~ Part(x~z9v1 ~v2)

The: meanings of Gr and Less (specified. by axioms not shOtm here)

are complementary: Gr(x,y) true if and only if Less(x,y) is false.

As in A3, Less denotes a total order on the atomsn I claim that

tAxi oms for Conc~Lcss~ and Gr~ UtBpr.n,B5~~-sort:(11,12))
derive thE? null claUDe if and on1y jf

- 15-

whenever 11 is a list, then so is 12 , ~nd]2 is the sor~ed version of

11 • In such a deriv8tion~ the effe~t of Part(x'Y9u1 .u2) is to

partition a list y into two lists: u1 containing atoms not greater

than the atom x, and u2 conta~ning atoms greater than x.

is determined by the clauses B3,B4, and BS"

This effect

The problem reduction in B2 satisfies the criteria 1) and 2).

Simulation using a suitably modified SL-resolution theorem-prover

sorts an arbitrary input list as efficiently a2 one can do it in a

conventional program language ,using only procedure calls. This

should not be surprising: the specification not only acts likB a

program; it also reuds like one.

Apart from the language discussed in this section, Kowalski's

system also has a solutionpro~edure which is based on the SL-

resolution method. In order to be able to explain why simulation

using the specification!B1 ~ .. ° 9B5J behave,2 S:J differently from what

one has become used to in resolution theorem-prcvjng~ I have no choice

but to expound in full the remaining parf of K"["alski~s system"

5.1 Horn clauses

A Horn clause is a clausp

B1 '. " ",B ~ Al • " " " ,A . m . . n

where m ~ 1. The follow.lng fcur kinds of Her'n "'~~jU8,,'S all have a

logical interpretati on, as explaLr;ed under the semantics of the

language. Here their interpretat1.ons arl;:; gl ven ac;;ordlng to the pro­

gramming or problem-solving point of view (due to Kowalski [14~15]).

n2QJ!nd m2:Q:

B (- A 1 ~ u n .oAn

is in terpre,ted as 11 .P.!.'.2'£££2!.£. Q~f.b~i,:U . .2Dn

interpreted as tho 12E.Q£QQgE§. .DE!D.l2,o

in terpreted as the 12£2£.tQgre 12S2£Y,o

calls.

Al ternativelY 9/

- 16 -

Alternatively, interpret the clause as a prescrlption for a

reduction to subproblems: B is solved if each of the sub-problems

in the set {A1,. o. ,An1 is solved.

Bf-
is interpreted as an assertion of fac~. It can be interpreted as

a special kind of procedure which has an empty body.

interpret the clause as a problem alread_y solved.

m = 0:

'*" A1 ' ..• ~ An

Alternatively,

is a E.9..§.1 statement; interpret it as a Eiet of procedure calls to be

executed or as a set of problems to be solved. If n = 0, then the

goal statement is also a ha11 st~tef!!2nt:: there are no more procedures

to be called, or problema to be solved.

Notice that there are only Horn clauses in both specifications

fA1 , ••• ,A6} and {B1 , ..• ,B5,. With the procedural interpretation in

mind, the latter reads almost like a program in a procedure-oriented

language. An unfamiliar feature is the occurrence of a term like

cons(x,y) in a procedure name, instead of a variable. Another

unfamiliar feature is the occurrence of more than OIle proc:edure

defini tion wi th the same predicate symbol in the name.

It is no coincidenee that only Horn clauses occur in the examples

A and B. Only such clauses will be used at all. Only such clauses

have a prngmatics according t,o the programming or problem-solving

interpretation. Indeed, only for Horn clauses will the solution

procedure of Kowalski's system be defined~

of Ho'rn clmwes containing no goal sta t.ement. In the examples above

{A1 ' , .. ,A63 and tB1 , ... ,B5 } are specifications.

The fact that most computer hardware is based on bi-stable switching

elements is, the basis of the well-known correspondence between computer

operations and the logical operations of propositional logic (logic

without variables): one of the stable states is interpreted as truth;

the other as falsity. Note that such a correspondence plays no rSle

in the progr~1mmin8' interpretation of Horn clauses,. which are a sub-

lanGuage of predicate logic. The sllitability of the language for

computer/

_. 17 -

computer implementation is not based on some special relation between

hardware and predicate logic ~ but on i t:3 s imilari tywi thconventional

high-level program languageso

The difference between these correspondenees between logic and

programming is similar to the difference noted by Minsky between two

possible ways of looking at a computer. In his introduction to

" Semantic Information Processing" [191 he wri tes:

" .•• the dreadfully misleading set of concepts that people get when

II they are told (with the best intentions) that computers are nothing

II but assemblies of flip-flops; that their programs are really nothing

"but sequences of operations on binary numbers, and so onn While this

ff is one useful viewpoint1 it is equally correct to say that the

ff computer is nothing but an assembly of :3ymbol-associat:i0n and process­

" controlling elements and that programs are nothing but networks of

ff interlocking goal-formulating and means··ends evalua t ing processes.

I find it helpful to be neutral towards the choice between the

logic and the program interpretation of the language (though using

either when convenient) and to think of it as a language for stating

problems to be solved by the solution procedure of the system. In

the logic interpretation a solution IS a refutation and the solution

procedure is a version of the SL-resolution proof procedure. In

the program interpretation a solution i~l a computation and the

solution procedure is an interpreter.

5.2 1he solution st~12

The solution procedure fs explained by means of a §Q]'u.1ion§.te12

which derives a new goal statement: from an existing one in the following

way. There is a selecti.2D £221Q which :::elect.s a subgoal A. in a goal
l

statement

If there is a clause

that "matches" the selected subgoal in the sense that there exists a

most/

- 18 ,-

'most general" substi tution Bof terms for variables that makes A. and
1

AI identical (see for instance [21)), then the solution step derives

the goal stateJ?ent:

~(A1,.nn"A. 1,A'1, .•• ~A I,A., 1""1A)B
, 1- " m 1+ n

From a logical point of Vlew this is a resolution step; other

interpretations are as a problem reduction step or as a replacement

of a procedure call by a procedure body.

It lIlay happen that the predicate in the selected subgoal does

not occur in any procedure name. Such a predicate is as:mmed to

be primitive: its rnc~anini? ts not a relation deterJllined by the

specification, but it is computed by hardware or lower-level software.

In order to determine the next goal s ta tement when the seLee ted sub­

goal has a primitive predicate v one may act as if the;re were added

to the specificatton a set of variable-free assertions containing this

predicate such that they cons +;i tute a listing of the meaning of the

primitive predicate. For instanc~, in the case of 1ess the set would

include the assertions:

1ess(0,0) (-

1ess(0,1) ~

1ess (0,2) ~

1ess(1 ,1) ,

1ess(1,2)~

1ess(?,2)~

I shall illustrate the solution step by means of the specification

fB1 , ... ,B5~· Suppose we want to sort the list cons(1.cons(8,cons(2~nil»);
applicatiohof the'~olution step to the goal statement (containine only

one subgoal for selec~ion):

BO' (- Sort(cons(1.cons(8,cons(2,nil))),y)

and the only lIlatching procedure

B2' Sort(cons(x,y),z) <- Part(x~y,u1 ~u2). Sort (u1 ,1T 1)Sor+(u2 v2).

Conc(v1 "cons(;"v2),z)

derives the goal statement

B6. (- Part(1 ,cons(8. cons(2, nil)) l' u1 ~ u2) 9 Sort:(u1 ? IT 1) ~ Sort (U2 ~ v 2) ,

Conc(v1 ,cons(1 ,v) ,y)

5.3 .§election rule anSL.§f.§r('lLstrg.t~g.J

- 19 -

5.3 Selection rule and search strategy

When the halt statement is derived, the problem is solved 0 For

an explanation of how to achieve such a derivation it is useful to

define a tree of which the nodes are goal statements: the root is the

unique original goal statement (like EOI; a node n has successors n1 ,

••• ,nk (k = 0,1 , •••), one for each procedure definition rna tching the

selected subgoal (and no other succes.§Ql:~).

A solution is a path in the tree ending in a halt statement o

Besides the selection rule and the solution step9 the solution

procedure requires a search strategy for finding a halt statement in

the tree.

Let us now proceed from the goal Eltatement B6 in the example.

To select anything but the first subgoal would be disastrous because

the other ones can be attained in many ways and, in this 12xample, only

one is right, as will now be explained. Which subgoal to select

depends on the number of solutions it has without taking the other

subgoals into account. For instance 9 Sort(U 1 9 v1) is solved by any

of the infinitely many pairs for which the sortedness relation holds o

At this stage it is not yet known that ()nly~ one of these, (nil9nil),

is compatible with solutions to the other sub-problems. Later on,

inore information becomes available tramlforming Sor f;(u 1 ~vl) into

Sort(nil,v1) which has one solution: v1 :=riil, independently of

solutions to other subproblems. Therefore, the selection rule

should prefer for selectim a SllbpJ.'0blem wi th only one solution. If

there is a subproblem with n~ solution at all. that is a better selection

still: the subtree with that problem aEl root node is emptyo

For reasons to be explained belOW, the first two arguments of Less,

Gr, Part, and Cone, and the first argument of Sort~ are designated to

be i-arguments. This allows the selection rU.le to be stated as

Select a subgoal of which

the i-arguments are variabIE~-free

In the programming interpretation this rule corresponds to the calling

of a procedure only when its input parameters have received a value.

The/

-. 20 -

The selection rule requires that the nr~t subgo&l of B6 be

replaced. The rna tching procedures are B4 and B5; the t.wo descendants

of B6 in the tree are

B7a; ~ Less(S,1),Part(1 ,cons(2,nil)9u1 ,u2) ,Sort(cons(S9u1),v1) 9

•.. Soi-t(u2 , v2) ~Cbnc(v1 9 cons(1 ~ v 2) 9Y) .

B7b ;' ~ Gr(S,1),Part(1 ,cons(2,nil),u1 ~u2)~Sort;(u1 ~V1)9
Sort(cons(S, u2) ,v2) 9Cone(v1 ,cons(1 9 v 2) 9Y)

In B7a the selected subgoal is to check Less(So 1). The predicate

Less is primitive; its mealling is su:::h that the selected subgoal Less

(S,1) is impossible to achieve. Therefore~ B7a can be deleted,

because it has no descendants in the trlge of goal-statements, and a

solution path, if one exists, ·must pass through B7b•

. a· It seems feaslb1e to go a step further: never generate B7
b . 6 b or B7 at all and go directly from B to B7: which is B7 minus the

supposedly achieved subgoal Gr(S? 1):

B7 ~ Part(1 ,cons(2,nil),u1 ~u2)9Sort(u19v1)9Sort(c:ons(S9u2)9V2)9

Oonc(v1 ,cons(1 9v2)'y)

We have the situation where one of the descendants of B6 has Less(Sp 1)

as selected. subgoal, the other has Gr(S~, 1) ~ and only one is achievable.

A condi t~ ,§!olutiQQ .§I§12. makes t.he tran~ition dj reC"tly from B6 to

B7 using the information that. just one of Less(y,x) and Gr(y,x) is

provable. It corresponds to the execu.tion of a conditional statement

in a program language.

If both the solution step and the conditional solution step are

available, then the .tree of goal statemen ts contains only a single path.

According to the programming interpretation the senten:?e {B1~" o. ,B5 ~

roads like a proGram for the qujc:ksort; algorithm ·wri~;t:en entirely with

procedures in a program language. The suc:eessive goal sfa temeri ts read

like the successive states of the stack of procedure calls to be

executed.

The tree of goal statements contains one path, there :i.s no

opportunity for search.

proof/

For t.his example, an autonomous resolution

.•. 21 ,-

proof procedure achieves the same level of effi-.::i eney as a conventional

program language. This makes the behaviour of Kowalski1s system a

notable exception to earlier experience wi th resolution proof procedures.

Still, the specifica tj on tBl, 0 , •• ~B5~ is not effici en t by programming

standards, because it is like a program in an Algol-like language

constrained to do everything by proeedure calL This and other

sources of inefficiency nre with:i n reac·h of optimlza t ion teohniques

lil{e those invest.igated by Darlingt.on and Burftal1 (~~].

This favourable result was obtained by ihe use cf a good proof

procedure and by some care in w.riting the spccif:icaUon. It is

useful to formulate a condition s'Ldficient to guaran+;ee that the tree

of goal statements contains only one path with the use of a computat­

ionally simple selection rule: seled a1ways the 1eft-most subgoal.

This is analogous to the behaviour of an interpre~,er for .conventional

program languages, whieh always executes the proced.ut·8 call on top of

the stack of calls to procedures awaiting execuli or:.

To establ ish a sufficient cond:i t,ion for the tre.e of 'goal

statements to have one path when the leftmost subgoal is always

selected 9 ef:fect a parti tioD in t:he set of arguments of each predicate

P into a set of i!illu +;::§!gl!l!len tE3, and a set of~=·.~1.~l!lf.f!i:.§, which

satisfies the fo1lowing three cond:i.t:ir)rJR.

1) Whenever the selected subgoal haB P as predicate and

alI input arguments are variable-free, then the goal­

statement has only one descendantQ

To verify whether t.his is true for a given padiUon v ' distinguish two

cases. Suppose P is an,9Dl?£i:mi.till predicaie. I n this case,

ascert.ain that the subgoal mat.ches one procedure name only~ or else

that a conditional solution step is avai.lable t.o en.sure that there be

only one de:sc:endfm;~o Note that, it d ependsindeed on inpu t·_·arguments

-being variable-free whether a selected ~!Uhgoal ma tr~hes only one

procedure name. For instance 9 if the first argument of a subgoa:l

Sort(•• 0, •••) . is variable-free, then it ma+;ches at, most one of Sort(nil,

nil) (the name in B1). and Sort(cons(x ,y) 9 z) (the name in B2). If it

is a variable, then.it matches botho

Suppose/

SuppOS·7) P :i 8 3 .p.liQ}l.:.tl~:g predIcateo The Illomung of the predi ca +:e

is a relation bel-wee n variable-free term". It dEpends on this

relation whet-her variDble-fr28 input-arguments uniquely determine the

output-argument.s~ WhICh i:::" lleCeSeary for such a gc'a~ sta+.emenL to

have one descendan t., F\)r HIS t!Jnce o if the fi 1'8 ~ two arguments of a

subgoal Conc(••• , ••• ~ •••) Dr8 variable-free? then the rSla:ion

uniquely determines the thiTd argument" T r t}-,e f II S t t.WI) arguments

are variables] then this 18 in general n('~: the ca2£>, and there would be

more than one descendant.

Note that the l-a1'gumen+,s of the sele.Tion rule (5.1) are input·-

arguments in thIs sense. For the +,1'8" of gou-;' sta h::meD IS to have

one path it is Buffi: I,,::,nt t.o f-nsurc; i.h~,t theinpu+ arguments of the

selected subgoaJ are a 1 wnys"af'1!Jb] e-free. II remalns to formulate

conditions under which the loftm~s' SUbg~3~ is always i~ this s~ate.

2) 'I'h~ call::: of each prccEcdurr:: body CBtl to crdercd in such

a way 3S+'0 be .§;QggQnti§.l, that is, for' e'Ery pnJCedure call

of the body~ ea'~h variable in a~l 5.np·;.:.-argumen t. oreurs in

an argumen+. (If a preceding procedure ea"ll orin an input

argument- of thp procedurA W:3ffie: o

If each procedure b0d,{ 1::: sequent V:.d 9 and if tljsJ.nplJt -3 rguments

of the initla-i goal 21:'3tF'men' ar""TE!r,-<:,b~c"'·frp,:;~, the'" the .leftmost

provl.ded t ha j:

correspona:ing sl,.bs"itut[on CaUSi?S v::tri6bl,:,,-·free term::>

to be substituted for a V&Il&hle occurring in an OQ~put

ar gumer. t; of thp s'JbgoaL

This conditicn 19 n~+' diffIcult to verify wrJpn. 3P 10

there is no mu :ual 1'Ol.:U1'2.10.o. Fer inSlan(~9 t~ verify.tha~ a subgoal

containing Sect has tbe pyr;per.l-y 3)9 ss-surne th·~+ alJ 5rgument.s in the

body of B2 are VilJ'.ltlbl e-fre(" Hnd lien Jy th,') tt,his a~ C'G rcolCls for z in

the name of B2 " To conclude t ha~ Sor'; f'J.a 8 propc'r+y 3) is an example

of circular reasoning because of the recurSIve nature of B2 "

Hmvever~1

H()wever~ the clrc.u1ar'l.ty 1S n,)t VIClC;U~o be,8 1JSe 'he output argumen+:s

of the calls to Sort In B? reprE>toen t 112'S t,Wl' an:' at leas' one

atom shorter than the cco in. the prc~'<?dun' rame o

6. !..J;Q12,.:d owrLJ?§;r§fLf2r_QQ'£!2§.!!2.~1£:Ls:.Q.D.lj;E':.::1' re~_,1§;.QgQ§g&:§

The problem of parsing can te f0rmula~ed in su h a way that

parse +, reeS~lre repre3en 'ed lly term co '1nd 'ller; 'h,:: f,r '\:; em be·:ome s

one of simulatIon wlln 0Utp.t a pgyeetr~e. Howe~erD In thiS example

I will. ViEW parsIng a2, a t")Si:{ where 'Lt: f't:quired ",tlSIlI"'1" is only a "yes"

or !) "no" ~ inchc:'ltlng \~heth,;'r' the Vll'f'C-i ~::;;nng 1S gr3.m.m,:;ticaL For

the applicnhon of 8utoma t L pr~)gramming ;0 such a t8sk T will use

Greenvs mode of "checlnng" (flgur~ 2) !:md ot,tain ,he par2e from the

path in the tree of gool 2~a~ernenls from the roo~ '0 the hali statement.

The exampie Wl.U slnw t-h3t +he requited 2PPClfl.C'a'}(~n .has to contai.n

only a st,raightforwsrd trans(npt.i0rl of EJ con+ex'-tres gr'arnmar and a

repre8en~ation of t.t;(S1'r.lllg'O atIc\\' KClIJdJsk: ~::: ,'ys:ern to simulate

a reasonable top-dDIHi pnrsIng a.lgorirhmo

This i.s a level cf fJ.u+omaL,' prCJgramll1~ng teyond thal. prc.vided

Of C('UJ'S;:. prr'gnutls exi ~~~:I hEl:: accept

an arbi+rary contex'·-fr0e gramm0r and use it to par2~ strIngs. but

such programs Vii 11 ll(\t do anyttnng e13"'0 Here "he pr0gram that

a('cep~s the grammAr "tnd pc;rSG:O' ::'tring.'> -lS ttle s(,u~i (, pro'edure of

Kowalsklos system, vJhi 'h :3 gen(~toLl\f bprlH'able 8e '::lriJ.n:trpreTer

The specificatt:'!J Clf tne prirs."rJ(S pcbJ-n, b~1S IY IndIvidual

constant.s 11 nU.mhu· (f "m8rk,,'ys" wh'l;r, .id!~ntify t}jf;° pcslticTIS in the

lnput sLrlng bet,ween SllcceSSII.'t" tC'Tmlnh~ 2vrnbol<:'o Suppcse +he input

Hhere m,'3rke.r2

o 11 a 2=-- "5 1. L).t 5 + F: a -: "1 8} -1

The/

The fol.1owing clauses specify the jnp~t strl~g

C10

C20

C3.

C4.

C"")0

~(O,,1)~

a(1,,2)~

=(20 3) ~

{(3,4)~
r'(4,S)~

ct:. +()~6) ~

C'o a(6,7)~

CBo }("L8) +­

C90 3(B,y)~

These ore all pr'ocedures wlth a 118me but Ylil bOr:lYe Toe terminal.

symbols of the strIng (Gol) bfe used 8;3 pu,dlcate .symbol":'o The

meaning of any of these predl(ateS is tha~ +h8 marKers ~onsti1~ting

their '3.rgumerl t s ore., r:;cntle(~tAj in the spe li'led way: C4; for example 9

states that" f !' C'olJnec'+;s '3 ard 40

The strlng IS to be parsed wlth the fallowing grammar (written

in conventional TICJt,3t:'on):

B -) R I {B ')

R -->E - E

E: ._> a I b I {E + E)

parsing.

Cl0. B(x~y)+- R(x.yJ

c 1 ~. B (x. y) ~ 1 (x ~x 1) ;' B (xl' x2) ~ 1 (x? ;' y)

C 1 2 • R (x ~ y) (- E (x ~' xl) ~ = (x l' x)~. E (x 2 • Y)

C 1 "5. E: (x y) of- a(x:, y)

C14. E(-x,y)+ b(x.y)

C 1 '). E (L Y) ~ t (x • xl) ; E (x 1 ;' x 2)' + (x 2 " x 3) ;' E (x),x 4);' } (x4 ,'y)

Noj-e ~"hat alternative pror:luct.ions from the same non-~erm"jr,al symbol

t.ranscribe to dlffer'ent pro('edure;:o wIth the, S,SIYJe f1aIDE:'.

The task Ofp.'u'21ng the s+ong (h"l) is expcesseJ by the goal

stat6men i

which becomes 1"}],o' ['00 t, of rho t;rec of goal s t.J temen + 2$ The string is in

t.he .JanguDgc defHlC:d by till) grammar .iff trH:~ tree cont.'iil~S a haJ t statement e

The/

- 25 _.

The parse is obtained by tracing the path from the root to the halt

statement and by noting at each step which procedure was applied. ,

A good selection rule for problems like this is the ;following.

If any subgoal is present with a predieate denoting a terminal symbol

with at least one argument a constant, then select this. (Such a

subgoal is merely to check whether a terminal symbol occurs in a

specified place). Otherwise, select any subgoal, preferring one with

a greater number of constant arguments"

This selection rule, together with the method for representing

production rules and strings as clauseB, is all that is required to

apply Kowalski's system to the task of parsing strings from context­

free languages from the top down. It does not seem too ambitious

to envisage automatic generation of the selection rule from the

general principle that subgoals that are seen to have fewer solution

possibilities should be attempted first. The preference for terminai

symbols in the above selection rule then follows from inspection of

iC1, ... ,C1'5}. The preference for subgoals having more variable­

free arguments is a generally useful hHuristic indicating fewer

solution po~sibilities.

In the quicksort example I did not discuss a search strategy for

the tree of g'oal statements, because it consists of a single path.

In the parsing examples the search strategy matters: the tree has two

substantial branches. Of course, if a solution exists, then there

exists a finite path ending in a halt Btatement, and this path is

found by a breadth-first search of the tree. What makes Kowalski's

system work so well is that the tree iB drastically pruned by deleting

all subgoals which can be shown to be unattainable. For instance,

in this example a parser must ultimately'discover that a successful

parse cannot begin with an application of the production rule Boo.:> R'.

'1'11e GUlltrco of figure 4 represents the attempt to find such a parse.

It turns out to be necessary to prove ;bhat +(2,v31), which is im­

possible simply because the string has a ":" in that place and not a

"+".

- 26 -

~ i (1 , u1~'···

~ a(1 ,u12), = (u12 ,u2)' E(u22 ,8

I
<;~ :~ (2 , u) 1~ (u:::J 2 ' 8) I"'" -··22 . , .-

~E(3,8)

I ==

o
]'igure 3.:. The tree 01 goal sta temen ts genera tedwhen l parsing the

string (6.1) with the grammar (6.2). Goal statements

l·ri th a doubly underlined subgoal have no successor,

Singly underlined subgoals are those selected.

- 27 -

Figure.s.. The unsuccessful bry.nch of the tree of goal statements

,shown in figure 3."

-- 28 -

In figures 3 and 4 failures are shown by a double underlining.

It is apparent that these failures severely reduce the size of the

tree of Gonl statements. If even a single subgoal is unattainable

the entire goal statement can be deleted because all subgoals must

be successful. Moreover, if all descendants of a goal statement have

been deleted, then it may itself be deleted. Because of these two

rules, the failure of the subgDal +(2,v31) triggers a progressive

collapse which erases the entire subtree of figure 4 except for its

root B(O,9).

This representation of the parsing problem vras invented by

Colmerauer and Kowalski in unpublished work done at the University of

Marseille in the summer of 1971. It was suggested by Colmerauer's

parsing method using "Q-systems" [21. Subsequent work by Kowalski

on "connection graphs" [131 lifts the restriction to top-down parsing

inherent in the goal-oriented nai~re of the solution procedure

described here. When using connection graphs, the solution step

would have no bias towards top-down or "bottom-up and it could alternate

between the two strategies in an advantageous wayo

A more elaborate investigation than the one in this example has

been reported by Minker and Vanderbrugh [181. They described two

methods for representing formal grammars in first-order predicate logic

using Horn clauses only and in each case used as a parser a resolution

proof procedure, exploiting the computational advantages of Horn

clauses. One of their methods, the "derivation sequence representation"

leads to the simulation of a. top-down parser, whereas the other

simulates bottom-up parsing. Compared with the derivation sequence

representation the method of Colmerauer and Kowalski has the advantage

that the notions of derivation in logic and in the formal gramrr:3.l"

almost/

- 29 - -

almost coincide. As a result, -the solution step in Kowalski's

system is a derivation step for the formal grammar, as shown in the

example. In the derivation sequence representation there is a clause

for each possible form of derivation step.

7. Acknowledgment

I am indebted to Robert Kowalski for useful discussions and for

making available essential material not yet published. The research

was supported by a Science Research Council grant to Professor D.

Michic~ whom I wish to thank for his encouragement and for help with

earlier versions of this paper.

were made by Luis Pereira.

8. References to the literature

Many suggestions for improvement

Annual review in automatic programming

R. Goodman (ed.); Pergamon Press

2 A. Colmerauer

Les syst~mes-Q, ou un formalisJ;lle pour analyser et synthetise.r

des phrases sur ordinateur

Publication interne no 43, D~pt. d'Informatique,

Facul te - des Sciences, Uni versi te'- de Montreal

3 J. Darlington and R.M. Burstall

A system which automatically improves progr.ams

Proc. 3rd International Joint Conf. on Artificial Intelligence, 1973

4 E.W. Elcock

Descriptions

Machine Intelligence 3, B. Meltzer and D. Michie (eds.), 173-179

Edinburgh University Press, 1968

5 M.H. van Emden and R.A. Kowalski

The semantics of predicate logic as a programming language

Report MIP-R-1 03,/

- 30 -

Report MIP-R-103,
,

Dept 0 of Machine Intelligence, University of Edinburgh, 1974

6 J.M. Foster

Assertions: programs written without specifying unnecessary order

Machine Intelligence 3, B. Meltzer and D. Michie (eds.), 387-391

Edinburgh University Press, 1968

7 J.~I. Foster and E.W. Elcock

Absys 1: an incremental compiler for assertions

Machine Intelligence 4, B. Meltzer and D. Michie (eds.), 423-429

Edinburgh University Press, 1969

8 C. Green

The application of theorem-proving to question-answering systems

Technical note no. 8, Artificial Intelligence Group,

Stanford Research Institute, 1969

9 P.J. Hayes

Computation and deduction

Proc. 1973 MFCS Conference

Czechoslovakian Academy of Sciencee:

10 C.A.R. Hoare

Algorithm 64: quicksort

Comm. ACM, ± (1961),321

1 1 S.C. Kleene

Mathematical Logic

Wiley, New York, 1967

12 D.E. Knuth

Top-down syntax analysis

Acta Informatica ~ (1971), 79-110

13/

- 31 -

13 R.A. Kowalski

An improved theorem~proving system for first-order logic

r.1cmo no. 65, Dept. of Computational Logic,

University of Edinburgh, 1973

14 R.A. Kowalski

Predicate logic as programming language

Memo no. 70, Dept. of Computational Logic,

University of Edinburgh, 1973

15 R.A. Kowalski

Logic for problem-solving

Memo no. 75, Dept. of Computational Logic, .

University of Edinburgh, 1974

16 R.A. Kowalski and D. Kuehner

Linear resolution with selection function

Artiticial Intelligence ~ (1971), 227-260

17 D.W. Loveland

A simplified format for the model-elimination theorem-proving

procedure

J. ACM, 1£ (1969), 349-363

18 J. Minkcr and G.J. Vanderbrugh

Representations of the language recognition problem fora theorem­

prover

Technical Report TR-199, Computer Science Center,

University of Maryland, 1972

19 M. Minsky

20/

Semantic Information Processing

MIT Press, Cambridge, Mass., 1968

20 M. Minsky and S. Papert

Progress Report

- 32 -

Artificial Intelligence Memo 252,

Artificial Intelligence Laboratory,

Massachusetts Institute of Technology, 1972

21 N.J. Nilsson

Problem-solving Methods in Artificial Intelligence

McGrm'l-Hill, New York, 1971

22 R. Reiter

Two results on ord'ering for resolution with merging and linear

format

J. ACM, 12 (1968), 630-646

23 J~A. Robinson

A machine-oriented logic based on the resolution principle

J. ACM, 1l (1965), 23-44.

"-"33 -

9. Epilogue

Kowalski'.s system described in this paper is in fact similar to

PROLOG, a program language implemented in the University of Marseille

by Colmerauer and his colleagues ~ ': 2). Like Kowalski's system, PROLOG

admits only Horn clauses. Unlike Kowalski's system, PROLOG always

attempts subgoals from left to right in the program text, thus giving

a depth-first backtracking search of the tree of goal statements.

Several ambitious programming tasks have been accomplished in
1) , PROLOG. These include a natural language understanding system

a formula-manipulation system 3), and a STRIPS-style problem-solver 4),

The first version of PROLOG. was implemented in ALGOL-W; the next

version has been coded in FORTRAN, resulting in a programming system

which may well be competitive in use of machine time for tasks of

the type mentioned above. This is suggested by the fact that for

the examples tried, Warren's problem-solver is faster than the

original STRIPS system. A more important advantage of first-order

predicate logic as a high-level progrrun language is suggested by the

fact that Warren's problem-solver required about one man-week of

programming. time.

" A. Colmerauer, H. Kanoui, R. Pasero, and P. Roussel

Un systeme de communication homme-machine en fran~ais

Groupe d'Intelligence Artificielle

Universit~ d'Aix - Marseille, 1972

2) G, Battani and H. Meloni

Interpreteur du language de programmation PROLOG

Groupe d'Intelligence Artificielle

" Universite d'Aix - Marseille, 1973

3) M. Bergman and H. Kanoui

Application of mechanical theorem-proving to symbolic calculus

Groupe/

- 34 -

Groupe d'Intelligence Artificielle

Universite d'Aix-Marseille, 1973

4) D. Warren

WARPLAN: a system for generating plans

Report in preparation, Dept. of Computational Logic

University of Edinburgh

	Maarten00
	Maarten01
	Maarten02
	Maarten03
	Maarten04
	Maarten-more
	Maarten-more01
	Maarten-more02
	Maarten-more03
	Maarten-more04
	Maarten-more05
	Maarten-more06
	Maarten-more07
	Maarten-more08
	Maarten-more09
	Maarten-more10
	Maarten-more11
	Maarten-more12
	Maarten-more13
	Maarten-more14
	Maarten-more15
	Maarten-more16
	Maarten-more17
	Maarten-more18
	Maarten-more19
	Maarten-more20
	Maarten-more21
	Maarten-more22
	Maarten-more23
	Maarten-more24
	Maarten-more25
	Maarten-more26
	Maarten-more27
	Maarten-more28
	Maarten-more29

