
Object-oriented programming as the end of history in programming languages

M.H. van Emden
Department of Computer Science

University of Victoria
P.O. Box 3055, Victoria, B.C., V8W 3P6 Canada

ABSTRACT: In the past, the invention of a new pro-
gramming paradigm led to new programming languages.
We show that C++ is a perfectly adequate dataflow pro-
gramming language, given some suitable definitions. Rea-
sons are mentioned for believing that this is also the case
for logic and functional programming. We conclude that
object-oriented programming may remove the need for lan-
guages motivated by specific programming paradigms.

Introduction
The earliest programming languages were machine-
oriented, as the contemporary assemblers still are. The
next step was toward high-level languages, such as Fortran,
Cobol, and Algol. From our current perspective we call
these ((procedure-oriented” . The main events after that
were languages centered around a programming paradigm:
functional, dataflow, and logic programming languages.

I take as definition of programming paradigm: a way of
looking at a programming problem that makes a certain
class of problems much easier than in other such ways.
Thus a programming paradigm is recognized as such be-
fore a language is specifically designed for it. In the case
of functional, dataflow and logic programming, such lan-
guages have been implemented.

Object-oriented programming (OOP) plays the distinct
role of meta-paradigm. Accordingly, I do not try to give it
a place in the above historical development. In this paper
I show that OOP subsumes dataflow programming lan-
guages. I sketch an argument that it can do the same for
functional and logic programming. If we jump to the con-
clusion that future paradigms can also be incorporated in
OOP, then OOP is indeed the end of history in program-
ming languages. This is not to say that any of the existing
OOP languages will not be superseded: many details in
these languages are still controversial.

Dataflow programming
In the dataflow paradigm all computation happens in a
network consisting of nodes connected by unidirectional

datapipes. Thus each node has zero or more input pipes
(when the output end of the pipe is connected to the node),
and zero or more output pipes (when the input end of
the pipe is connected to the node). A pipe is used by
repeatedly placing data items a t its input end. These items
can be retrieved from its output end in the same order in
which they entered at the opposite end. Abstractly viewed,
the pipes behave like the abstract data structure referred
to as a queue.

The dataflow paradigm is justified by the class of prob-
lems that it makes easy to solve. An important subclass is
Structured Systems Analysis (also called Structured Anal-
ysis and Design Technique), which is widely applied in
commercial dataprocessing [a]. However, Structured Sys-
tems Analysis is a world unto itself, and is apparently not
aware of the larger context of dataflow programming.

Structured Systems Analysis discovered dataflow by in-
spired thinking about commercial dataprocessing applica-
tions. Ashcroft and Wadge [8] arrived at the idea starting
from studies in semantics of programming languages. Den-
nis, Arvind and others at MIT have arrived at the dataflow
paradigm from computer architecture [7].

As early as 1977 the paradigm was already sufficiently
compelling that a programming language was designed to
make dataflow programming as natural as possible [4]. The
paper just mentioned also contains some simple and widely
appealing examples showing the paradigm at its best. Note
that the paradigm was independently arrived at from dis-
parate areas: commercial applications, semantics, and ar-
chitecture. This suggests that it’s “real” in some sense.

Hamming’s problem solved i n dataflow A good in-
troduction to the dataflow paradigm is Hamming’s problem

[41:

to print out in increasing order all positive inte-
gers that have no prime factors other than 2, 3,
or 5.

This problem is attributed to R.W. Hamming by Dijkstra
[I], who provided an ingenious solution. It is more efficient,

0-7803-3905-3/97/$10.O0@ 1997 IEEE

982

but is considerably harder to understand than the dataflow
version given by Kahn and McQueen [4].

One approach to a solution starts with the observation
that the infinite sequence x of numbers required by Ham-
ming’s problem satisfies the following equation:

I = 1 o merge(merge(t:!(x),t3(z)),t~(x))

where

merge is the result of merging its two sorted input
sequences into a sorted output sequence, suppressing
duplicates

t2 is result of multiplying its input sequence number
by number by 2; similarly for t 3 and t5

the meaning of o is defined by U o v being the result of
prefixing the sequence v by the individual number U

The question whether the solution to Hamming’s prob-
lem is the only solution to the equation is addressed by the
methods developed in Kahn [3].

To turn this observation into a dataflow network, we
take the above equation with a complex expression and
turn it into a system of simple equations by introducing
auxiliary variables. We do this in two steps. In the first
step, we get rid of nested expressions:

U = t2(2) 6 = t3(1) d = t5(2)
c = merge(a, 6)

I = l o x]

z1 = merge(c, d)

The resulting simple equations can, if considered in iso-
lation, each be translated directly into a node of a dataflow
network. Each of a, b , c, d, and x1 correspond to a dat-
apipe because, in the above set of equations, they have
exactly one occurrence in a left-hand side and exactly one
occurrence in a right-hand side. An occurrence on the left-
hand (right-hand) side corresponds to the output (input)
side of the datapipe.

However, z has too many occurrences in right-hand
sides. We can avoid this problem by making these occur-
rences into different variables, say f , g , and h. But how
do we tell that these are the same sequence? To do that,
we introduce a node type, with one input and two output
pipes, that outputs two identical copies of each item that
it removes from the input pipe. Let us call this node split.

Figure 1: Dataflow network for Hamming’s problem in the
initial state, where all pipes are empty except a 1 in x i .

The entire top two lines each correspond each to a splzt
node; the remaining six equations correspond to a node
each. This makes eight nodes in all. See the network
diagram in Figure 1.

An object-oriented implementation of Hamming’s
problem In the object-oriented solution of any problem,
we are advised to consider the nouns of the specification
as candidates for classes.

In any dataflow network, particularly conspicuous nouns
are node and dataprpe. As observed before, datapipes be-
have like queues, a commonly used class. In the C++ code
in Figure 2 we can see a queue being created, each with
maximum size 10, for each datapipe in the diagram.

According to the advice just mentioned, we should con-
sider a class suitable for creating all required nodes as in-
stances. The advice, though a good first approximation,
needs some refinement. This is because objects of the same
class should have states of the same form, though not nec-
essarily of the same content. The state of a node object in-
cludes the states of the abutting datapipes. And of course,
instances of the same class should have the same behaviour.

These considerations suggest that the merge nodes are
instances of the same class (merge; the individual instances
are ml and m2), as are the splzt nodes (of the class s p l i t ,
with instances s p i and sp2), a’s are the nodes t 2 , t3, and
t5 (of the class times, with instances ti, t 2 , and t 3) .

Lines 3-5 create instances of class queue to act as dat-
apipes, each with a maximumsize of 10. Given these pipes,
lines 6-10 create the nodes, with the correct pipe connec-
tions. These lines seem the most succinct possible textual
representation of the diagram in Figure 1. In so far as
this is true, C++ comes close to the best possible dataflow

983.

void main0 C //01
const int maxTimes = 50; //02
queue a(lO), b(10), ~(101, d(10), 1/03

x1(10), x(10). //04
f(101, g(l0). h(10), i(10); 1/05

merge ml(&a,&b,&c), m2(&c,&d,&xl); //06
times t2(2,&f ,&a), t3(3,&g,&b), //07

t5(5,&h,&d); //Os
split spl(&x,&h,&i), sp2(&i,&f,&g); 1/09
print p(&xl ,&XI ; //lo

//ll
xl.add(1); //12
for (int j=1; j < maxTimes; j++)(//13

ml .run() ; m2. r u n 0 ; // 14
t2.run(); t3.runO; t5.runO; //15
spl .run() ; sp2. run() ; p. r u n 0 ; //I6

3
)//void main (

Figure 2: C++ code for the dataflow network for Hamming’s
problem. The node print has been added to allow the
solution to be printed.

programming language.
Lines 3-10 create t.he dataflow network; they do not.

cause it to execute its computation. The attraction of the
dataflow paradigm is to avoid the difficulty of conventional
programming, namely to ensure that events happen in the
right sequence. To execute a dataflow network, each node
executes, independently of the others, the following simple
computation:

If any of the input datapipes is empty, or if any of
the output datapipes is full, do nothing. Other-
wise, remove the next item from each of the input
pipes, perform on them the specialized computa-
tion characteristic for the type of node, and place
the results, if any, on the output pipes.

The computation just described is invoked by a method
called run, which is defined for each of the classes merge,
times, and split.

To execute the entire network, one invokes the run
method for each node, as in lines 14-16 of Figure 2. Typ-
ically several of these invocation have no effect because of
full output or empty input pipes. But if the network can do
anything at all, then a t least one node will do something.
In large networks it is worth optimizing the invocations of
the run method. One can keep track of which nodes are
blocked. A blocked node connected to a pipe of which the
content changed may no longer be blocked and becomes a
candidate for being run. Such an optimization is reminis-

cent of the constraint propagation algorithm of D. Waltz

Note that in lines 14-16 the order of the statements does
not matter: in dataflow it matters less what order things
are done in than in conventional programming.

Space limitations prevent us from listing the entire pro-
gram, which is about a hundred lines, including the queue
implementation. We just add a representative class defini-
tion:

[91.

class times (
private:

public:
int mult; queue *in, *out;

times(int Mult, queue *In. queue *Out) C
mult = Mult; in = In; out = Out;

1
void run() 1

if (in->empty() I I out->full()) return;
out->add(mult*(in->next ())) ;
in->remove();

1
3;

Other paradigms

Functional programming In procedure-oriented lan-
guages, numbers are privileged in that one can (1) give
them names, (2) assign them to variables, and (3) return
them as function results. In these languages, funct.ions are
underprivileged in that they share with numbers property
(l) , but not (2) and (3). The motivation for functional
programming languages is to accord to them all the privi-
leges of numbers, and thus make them “first-class objects”,
as was the going terminology in functional programming

In OOP one can make functions into objects. This is
exploited in the function objects of STL (the Standard
Template Library [5] being included in the C++ standard).
I don’t want to suggest that STL has the power of a func-
tional programming language. But that is because the
designers did not share the motivation of the designers of
functional programming languages. They had different ob-
jectives, in which function objects play only a minor role.
But STL does suggest that the ideas for functional pro-
gramming can be implemented in C++. See the generic
accumulate algorithm [5] , which is a standard functional
programming example.

[GI.

Logic programming The main difficulty in a high-level
implementation in C of a logic programming language like
Prolog lies in control. Forward computations in Prolog

984

map neatly on the function-call control of C. But back-
tracking is difficult to implement when forward computa-
tion is done by conventional function calls. c++ has, in
addition to the standard control of C, exception handlers.
If each of the clauses for the same predicate is associated
with an exception handler rather than a function, then the
Prolog-style control is implemented in c++ in a natural
way.

Concluding remarks

One wants to get all the help one can in making pro-
gramming problems easier. This suggests being able to
choose the right paradigm, even if that means switching
1 anguages.

However, in running a software-development shop, one
wants to avoid the inefficiencies in training and docu-
mentation caused by not standardizing on a single lan-
guage. Moreover, paradigm-oriented languages like Prolog
and functional programming languages share with other
languages a good deal of what I call “mundane infras-
tructure”: how your write less than or equal to, strings,
characters, in what lengths integers or floating-point num-
bers come, what mathematical functions are available, and
so on. However valuable the paradigm in question may
be, it does not add anything of value to the mundane in-
frastructure. Hence availing oneself of the advantages of
the paradigm comes at present with a considerable cost
in time, tedium, and frustration when one switches to a
capriciously different mundane infrastructure.

Such a switch could be avoided by standardizing it and
re-standardizing Prolog, Lisp, ML, . . . , accordingly. Given
the Herculean labors required so far for more limited stan-
dardization, this seems unlikely. It is more attractive to
use the paradigms via a class library in an OOP language
that one is using anyway, and thus to adopt the mundane
infrastructure of that language.

In recent years the dilemma has been resolved almost
universally by giving up on the advantage of working in
the paradigm that is right for the problem: most shops,
or even entire companies have standardized on a single
language’.

Although much lip service has been paid to the virtues of
object-oriented programming, its full potential seems to be
unknown. It is this: that we no longer have the dilemma.
A fuller understanding of both object-oriented program-
ming and the paradigm of interest allows one to write a
suitable class library so that one can have the advantages
of the paradigm of choice within the single programming
language that organizational efficiency demands.

C++ has been widely criticized for its many shortcom-
ings. These criticisms strengthen my case: I claim that
c++ is good enough to implement valuable programming
paradigms. As is to be hoped, C f f will be superseded by
a better language. This paper provides a criterion for what
is to count as “better”. History may not, after all, have
ended in programming languages.

References
E.W. Dijkstra. A Dzsczplzne of Programmzng. Prentice
Hall, 1976.

Chris Gane and Trish Sarson. Structured Systems Anal-
ysis. Prentice-Hall, 1979.

Gilles Kahn. The semantics of a simple langauge
for parallel processing. In Informatzon Processang 74.
North Holland, 1974. Proceeding of the IFIP Congress.

Gilles Kahn and David B. MacQueen. Coroutines and
networks of parallel processes In B. Gilchrist, editor,
lnformatzon Processing 77. North Holland, 1977. Pro-
ceeding of the IFIP Congress.

David R. Musser and Atul Saini. C++ Programming
wzth the Standard Template Library. Addison-Wesley,
1996.

Joseph E. Stoy. Denotatzonal Semantzcs: The Scott-
Stmchey approach to Programming Language Theory.
MIT Press, 1977.

A.B. Veen. Dataflow machine architecture. Computzng
Surveys, pages 365-396, 1986.

William W. Wadge and Edward A. Ashcroft. Lucid,
the Datapow Language. Academic Press, 1985.

D. Waltz. Understanding line drawings in scenes with
shadows. In Patrick Henry Winston, editor, The Psy-
chology of Computer Vaszon, pages 19-91. McGraw-
Hill, 1975.

. ’ But it’s scary to see the stampedes resulting from everyone start-
ing to do what everyone else is doing. The stampede into C++ has
hardly subsided when another one into J a m gets under way.

